58SP0A/58SP1A Variable-Speed ECM Induced-Combustion, Single-Stage 4-Way Multipoise Non-Condensing Gas Furnace Series A # Installation, Start-up, Operating and Service and Maintenance Instructions | GAFFETTI GONGINED ATTONIG | _ | |---|----| | SAFETY CONSIDERATIONS | 3 | | ELECTROSTATIC DISCHARGE (ESD) PRECAUTIONS PROCEDURE | 4 | | INTRODUCTION | 5 | | CODES AND STANDARDS | 5 | | Safety | | | General Installation | 5 | | Combustion and Ventilation Air | 5 | | Duct Systems | 5 | | Acoustical Lining and Fibrous Glass Duct | 5 | | Gas Piping and Gas Pipe Pressure Testing | 5 | | Electrical Connections | 5 | | Venting | 5 | | LOCATION | 6 | | AIR FOR COMBUSTION AND VENTILATION | 7 | | Outdoor Combustion Air Method | 8 | | The Standard Method: | 8 | | Combination of Indoor and Outdoor Air | 9 | | INSTALLATION | 0 | | Upflow Installation | 0 | | Leveling Legs (If Desired) 1 | 0 | | Downflow/Horizontal Installation 1 | 0 | | Suspended Furnace Support | 1 | | Platform Furnace Support | 1 | | Roll-Out Protection | 1 | | Return Air Inlet | 1 | | Filter Arrangement | 2 | | AIR DUCTS 1 | 2 | | GAS PIPING | 9 | | ELECTRICAL CONNECTION | 20 | | ACCESSORIES | 23 | | VENTING | 25 | | START-UP, ADJUSTMENT, AND SAFETY CHECK 3 | 33 | | Start-Up Procedures | 33 | | Service Label | 34 | | Adjustments | 35 | | Check Safety Controls | 10 | | Checklist | 10 | | SERVICE AND MAINTENANCE PROCEDURES 4 | Ю | | Wiring Diagram | 12 | | | Care and Maintenance | 42 | |---|------------------------------------|----| | | Sequence of Operation | 45 | | | Troubleshooting | 48 | | P | ARTS REPLACEMENT INFORMATION GUIDE | 50 | Use of the AHRI Certified TM Mark indicates a manufacturer's participation in the program. For verification of certification for individual products, go to www.abridirectory.org. **NOTE**: Read the entire instruction manual before starting the installation. Portions of the text and tables are reprinted from NFPA 54/ANSI Z223.1©, with permission of National Fire Protection Association, Quincy, MA 02269 and American Gas Association, Washington DC 20001. This reprinted material is not the complete and official position of the NFPA or ANSI on the referenced subject, which is represented only by the standard in its entirety. | | | | | | | | | A190045 | |---|--------------|------------------|-----------------|-----------------------|-----------------------|--------------------|---------------------|---------------------| | | | Α | В | С | D | | | ACCESSORY
FILTER | | | FURNACE SIZE | | | TOP AND | | VENT | | MEDIA | | | | CABINET
WIDTH | OUTLET
WIDTH | BOTTOM FLUE
COLLAR | BOTTOM
INLET WIDTH | CONNECTION
SIZE | SHIP WT.
LB (KG) | CABINET
SIZE | | İ | 045V17-16 | 17-1/2 (445) | 15-7/8 (403) | 11-9/16 (294) | 16 (406) | 4 (102) | 120 (54) | 16 (406) | | ı | 070V17-16 | 17-1/2 (445) | 15-7/8 (403) | 11-9/16 (294) | 16 (406) | 4 (102) | 129 (59) | 16 (406) | | ĺ | 070V21-20 | 21 (533) | 19-3/8 (492) | 13-5/16 (338) | 19-1/2 (495) | 4 (102) | 141 (63) | 20 (506) | | ĺ | 090V21-20 | 21 (533) | 19-3/8 (492) | 13-5/16 (338) | 19-1/2 (495) | 4 (102) | 143 (65) | 20 (506) | | ĺ | 090V24-20 | 24-1/2 (622) | 22-7/8 (581 | 15-1/16 (383) | 23 (584) | 4 (102) | 150 (68) | 24 (610) | | ĺ | 110V24-22 | 24-1/2 (622) | 22-7/8 (581 | 15-1/16 (383) | 23 (584) | 4 (102) | 153.5 (70) | 24 (610) | | | | | | | | | | | Fig. 1 - Dimensional Drawing #### SAFETY CONSIDERATIONS ### **A** WARNING ### FIRE, EXPLOSION, ELECTRICAL SHOCK, AND CARBON MONOXIDE POISONING HAZARD Failure to follow this warning could result in dangerous operation, personal injury, death, or property damage. Improper installation, adjustment, alteration, service, maintenance, or use can cause carbon monoxide poisoning, explosion, fire, electrical shock, or other conditions which may cause personal injury or property damage. Consult a qualified service agency, local gas supplier, or your distributor or branch for information or assistance. The qualified service agency must use only factory-authorized and listed kits or accessories when modifying this product. ### **A** CAUTION #### FURNACE RELIABILITY HAZARD Failure to follow this caution may result in unit component damage. Application of this furnace should be indoors with special attention given to vent sizing and material, gas input rate, air temperature rise, unit leveling, and unit sizing. Installing and servicing heating equipment can be hazardous due to gas and electrical components. Only trained and qualified personnel should install, repair, or service heating equipment. Untrained personnel can perform basic maintenance functions such as cleaning and replacing air filters. All other operations must be performed by trained service personnel. When working on heating equipment, observe precautions in literature, on tags, and on labels attached to or shipped with furnace and other safety precautions that may apply. These instructions cover minimum requirements and conform to existing national standards and safety codes. In some instances, these instructions exceed certain local codes and ordinances, especially those that may not have kept up with changing residential construction practices. We require these instructions as a minimum for a safe installation. ### **A** CAUTION #### **CUT HAZARD** Failure to follow this caution may result in personal injury. Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts, and servicing furnaces. Wear safety glasses, protective clothing and work gloves. Have fire extinguisher available during start-up and adjustment procedures and service calls. This is the safety-alert symbol \triangle . When you see this symbol on the furnace and in instructions or manuals, be alert to the potential for personal injury. Understand the signal words DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which **will** result in severe personal injury or death. WARNING signifies a hazard which **could** result in personal injury or death. CAUTION is used to identify hazards which **may** result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation. - 1. Use only with type of gas approved for this furnace. Refer to the furnace rating plate. - 2. Install this furnace only in a location and position as specified in the "Location" section of these instructions. - Provide adequate combustion and ventilation air to the furnace space as specified in "Air for Combustion and Ventilation" section. - Combustion products must be discharged outdoors. Connect this furnace to an approved vent system only, as specified in the "Venting" section of these instructions. - 5. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections, as specified in the "Gas Piping" section. - 6. Always install furnace to operate within the furnace's intended temperature-rise range with a duct system which has an external static pressure within the allowable range, as specified in the "Start-Up, Adjustments, and Safety Check" section. See furnace rating plate. - 7. When a furnace is installed so that supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air shall also be handled by duct(s) sealed to the furnace casing and terminating outside the space containing the furnace. See "Air Ducts" section - A gas-fired furnace for installation in a residential garage must be installed as specified in the warning box in the "Location" section. - The furnace may be used for construction heat provided that the furnace installation and operation complies with the first CAUTION in the LOCATION section of these instructions. - 10. These Multipoise Gas-Fired Furnaces are CSA (formerly A.G.A. and C.G.A.) design-certified for use with natural and propane gases (see furnace rating plate) and for installation in alcoves, attics, basements, closets, utility rooms, crawlspaces, and garages. The furnace is factory-shipped for use with natural gas. A CSA (A.G.A. and C.G.A.) listed accessory gas conversion kit is required to convert furnace for use with propane gas. - 11. See Fig. 2 for required clearances to combustible construc- - 12. Maintain a 1-in. (25 mm) clearance from combustible materials to supply air ductwork for a distance of 36 in. (914 mm) horizontally from the furnace. See NFPA 90B or local code for further requirements. - 13. These furnaces SHALL NOT be installed directly on carpeting, tile, or any other combustible material other than wood flooring. In downflow installations, factory accessory floor base MUST be used when installed on combustible materials and wood flooring. Special base is not required when this furnace is installed on manufacturer's Coil Assembly Part No. CNRV, CNPV, CAP, or CAR or when Coil Box Part No. KCAKC is used. See Fig. 2 for clearance to combustible construction information. ## ELECTROSTATIC DISCHARGE (ESD) PRECAUTIONS PROCEDURE ### **A** CAUTION #### FURNACE RELIABILITY HAZARD Failure to follow this caution may result in unit component damage. Electrostatic discharge can affect electronic components. Take precautions during furnace installation and servicing to protect the furnace electronic control. Precautions will prevent electrostatic discharges from personnel and hand tools which are held during the procedure. These precautions will help to avoid exposing the control to electrostatic discharge by putting the furnace, the control, and the person at the same electrostatic potential. - Disconnect all power to the furnace. Multiple disconnects may be required. DO NOT TOUCH THE CONTROL OR ANY WIRE CONNECTED TO THE CONTROL PRIOR TO
DISCHARGING YOUR BODY'S ELECTROSTAT-IC CHARGE TO GROUND. - 2. Firmly touch the clean, unpainted, metal surface of the furnace chassis which is close to the control. Tools held in a - person's hand during grounding will be satisfactorily discharged. - 3. After touching the chassis, you may proceed to service the control or connecting wires as long as you do nothing to recharge your body with static electricity (for example; DO NOT move or shuffle your feet, do not touch ungrounded objects, etc.). - 4. If you touch ungrounded objects (and recharge your body with static electricity), firmly touch a clean, unpainted metal surface of the furnace again before touching control or wires - Use this procedure for installed and uninstalled (ungrounded) furnaces. - 6. Before removing a new control from its container, discharge your body's electrostatic charge to ground to protect the control from damage. If the control is to be installed in a furnace, follow items 1 through 4 before bringing the control or yourself in contact with the furnace. Put all used and new controls into containers before touching ungrounded objects. - An ESD service kit (available from commercial sources) may also be used to prevent ESD damage. Fig. 2 - Clearances to Combustibles #### INTRODUCTION This 4-way multipoise Category I fan-assisted furnace is CSA (formerly A.G.A. and C.G.A.) design-certified. A Category I fan-assisted furnace is an appliance equipped with an integral mechanical means to either draw or force products of combustion through the combustion chamber and/or heat exchanger. The furnace is factory-shipped for use with natural gas. This furnace is not approved for installation in mobile homes, recreational vehicles, or outdoors. Fig. 3 - Return Air Temperature This furnace is designed for minimum continuous return-air temperature of 60° F (15° C) db or intermittent operation down to 55° F (13° C)db such as when used with a night setback thermostat. Return-air temperature must not exceed 80° F (27° C) db. Failure to follow these return-air temperature limits may affect reliability of heat exchangers, motors, and controls. (See Fig. 3.) For accessory installation details, refer to the applicable instruction literature. **NOTE**: Remove all shipping brackets and materials before operating the furnace. #### CODES AND STANDARDS Follow all national and local codes and standards in addition to these instructions. The installation must comply with regulations of the serving gas supplier, local building, heating, plumbing, and other codes. In absence of local codes, the installation must comply with the national codes listed below and all authorities having jurisdiction. In the United States, follow all codes and standards for the following: #### Safety NFPA 54/ANSI Z223.1 and the Installation Standards, Warm Air Heating and Air Conditioning Systems ANSI/NFPA 90B . #### **General Installation** Current edition of the NFGC and the NFPA 90B. For copies, contact the National Fire Protection Association Inc., Batterymarch Park, Quincy, MA 02269; (www.NFPA.org) or for only the NFGC, contact the American Gas Association, 400 N. Capitol Street, N.W., Washington, DC 20001 (www.AGA.org.). #### **Combustion and Ventilation Air** Section 9.3 NFPA 54/ANSI Z223.1, Air for Combustion and Ventilation . #### **Duct Systems** Air Conditioning Contractors Association (ACCA) Manual D, Sheet Metal and Air Conditioning Contractors National Association (SMACNA), or American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) 2001 Fundamentals Handbook Chapter 35 or 2005 HVAC Systems and Equipment Handbook Chapters 9 and 16. #### **Acoustical Lining and Fibrous Glass Duct** Current edition of SMACNA and NFPA 90B as tested by UL Standard 181 for Class I Rigid Air Ducts #### Gas Piping and Gas Pipe Pressure Testing NFPA $54/ANSI\ Z223.1$; chapters 5, 6, and 7 and National Plumbing Codes . #### **Electrical Connections** National Electrical Code (NEC) ANSI/NFPA70. #### Venting NFPA 54/ANSI Z223.1; chapters 12 and 13. Fig. 4 - Multipoise Orientations #### LOCATION #### **GENERAL** This multipoise furnace is shipped in packaged configuration. Some assembly and modifications are required when used in any of the four applications shown in Fig. 4. This furnace must: - be installed so the electrical components are protected from water. - not be installed directly on any combustible material other than wood flooring (refer to SAFETY CONSID-ERATIONS). - be located close to the chimney or vent and attached to an air distribution system. Refer to Air Ducts section. - be provided ample space for servicing and cleaning. Always comply with minimum fire protection clearances shown on the furnace clearance to combustible construction label. ### **WARNING** ### CARBON MONOXIDE POISONING / COMPONENT DAMAGE HAZARD Failure to follow this warning could result in personal injury or death and unit component damage. Corrosive or contaminated air may cause failure of parts containing flue gas, which could leak into the living space. Air for combustion must not be contaminated by halogen compounds, which include fluoride, chloride, bromide, and iodide. These elements can corrode heat exchangers and shorten furnace life. Air contaminants are found in aerosol sprays, detergents, bleaches, cleaning solvents, salts, air fresheners, and other household products. Do not install furnace in a corrosive or contaminated atmosphere. Make sure all combustion and circulating air requirements are met, in addition to all local codes and ordinances. The following types of furnace installations may require OUTDOOR AIR for combustion due to chemical exposures: - Commercial buildings - Buildings with indoor pools - Laundry rooms - Hobby or craft rooms, and - Chemical storage areas If air is exposed to the following substances, it should not be used for combustion air, and outdoor air may be required for combustion: - Permanent wave solutions - Chlorinated waxes and cleaners - Chlorine based swimming pool chemicals - Water softening chemicals - De-icing salts or chemicals - Carbon tetrachloride - Halogen type refrigerants - Cleaning solvents (such as perchloroethylene) - Printing inks, paint removers, varnishes, etc. - Hydrochloric acid - · Cements and glues - Antistatic fabric softeners for clothes dryers - Masonry acid washing materials All fuel-burning equipment must be supplied with air for fuel combustion. Sufficient air must be provided to avoid negative pressure in the equipment room or space. A positive seal must be made between the furnace cabinet and the return-air duct to prevent pulling air from the burner area and from draft safeguard opening. ### **A** WARNING #### FIRE, INJURY OR DEATH HAZARD Failure to follow this warning could result in personal injury, death and/or property damage. When the furnace is installed in a residential garage, the burners and ignition sources must be located at least 18 in. (457 mm) above the floor. The furnace must be located or protected to avoid damage by vehicles. When the furnace is installed in a public garage, airplane hangar, or other building having a hazardous atmosphere, the furnace must be installed in accordance with the NFPA 54/ANSI Z223.1. (See Fig. 5.) A93044 Fig. 5 - Installation in a Garage ### **A** WARNING #### FIRE HAZARD Failure to follow this warning could result in personal injury, death and/or property damage. Do not install the furnace on its back or hang furnace with control compartment facing downward. Safety control operation will be adversely affected. Never connect return-air ducts to the back of the furnace. (See Fig. 6.) #### LOCATION RELATIVE TO COOLING EQUIPMENT The cooling coil must be installed parallel with, or on the downstream side of the unit to avoid condensation in the heat exchangers. When installed parallel with the furnace, dampers or other flow control must prevent chilled air from entering the furnace. If the dampers are manually operated, they must be equipped with means to prevent operation of either unit unless the damper is in the full-heat or full-cool position. ### **A** CAUTION ### PERSONAL INJURY AND/OR PROPERTY DAMAGE HAZARD Improper use or installation of this furnace may result in premature furnace component failure. This gas furnace may be used for heating buildings under construction provided that: - -The furnace is permanently installed with all electrical wiring, piping, venting and ducting installed according to these installation instructions. A return air duct is provided, sealed to the furnace casing, and terminated outside the space containing the furnace. This prevents a negative pressure condition as created by the circulating air blower, causing a flame rollout and/or drawing combustion products into the structure. - -The furnace is controlled by a thermostat. It may not be "hot wired" to provide heat continuously to the structure without thermostatic control. - -Clean outside air is provided for combustion. This is to minimize the corrosive effects of adhesives, sealers and other construction materials. It also prevents the entrainment of drywall dust into combustion air, which can cause fouling and plugging of furnace components. - -The temperature of the return air to the furnace is maintained between 55°F (13°C) and 80°F (27°C), with no evening setback or shutdown. The use of the furnace while the structure is under construction is deemed to be intermittent operation per our installation instructions. - -The air temperature rise is within the rated rise range on the furnace rating plate, and the gas input rate has been set to the nameplate value. -The filters used to clean the circulating air during the construction process must be either changed or thoroughly cleaned prior to occupancy. - -The furnace, ductwork and filters are cleaned as necessary to remove drywall dust and construction debris from all HVAC
system components after construction is completed. - -Verify proper furnace operating conditions including ignition, gas input rate, air temperature rise, and venting according to these installation instructions. Fig. 6 - Prohibit Installation on Back # AIR FOR COMBUSTION AND VENTILATION Provisions for adequate combustion, ventilation, and dilution air must be provided in accordance with: U.S. Installations: Section 9.3 of the NFPA 54/ANSI Z223.1, Air for Combustion and Ventilation and applicable provisions of the local building codes. ### **A** CAUTION #### FURNACE CORROSION HAZARD Failure to follow this caution may result in furnace damage. Air for combustion must not be contaminated by halogen compounds, which include fluoride, chloride, bromide, and iodide. These elements can corrode heat exchangers and shorten furnace life. Air contaminants are found in aerosol sprays, detergents, bleaches, cleaning solvents, salts, air fresheners, and other household products. ### **A** WARNING #### CARBON MONOXIDE POISONING HAZARD Failure to follow this warning could result in personal injury or death. The operation of exhaust fans, kitchen ventilation fans, clothes dryers, attic exhaust fans or fireplaces could create a NEGATIVE PRESSURE CONDITION at the furnace. Make-up air MUST be provided for the ventilation devices, in addition to that required by the furnace. Refer to the Carbon Monoxide Poisoning Hazard warning in the venting section of these instructions to determine if an adequate amount of make-up air is available. The requirements for combustion and ventilation air depend upon whether or not the furnace is located in a space having a volume of at least 50 cubic feet per 1,000 Btuh input rating for all gas appliances installed in the space. Spaces having less than 50 cubic feet per 1,000 Btuh require the OUTDOOR COMBUSTION AIR METHOD. ^{*}Minimum dimensions of 3-in. (76 mm). NOTE: Use any of the following combinations of openings: A & B C & D D & E F & G Fig. 7 - Air for Combustion, Ventilation, and Dilution for Outdoors Spaces having at least 50 cubic feet per 1,000 Btuh may use the INDOOR COMBUSTION AIR, STAN-DARD or KNOWN AIR INFILTRATION METHOD. #### **Outdoor Combustion Air Method** - Provide the space with sufficient air for proper combustion, ventilation, and dilution of flue gases using permanent horizontal or vertical duct(s) or opening(s) directly communicating with the outdoors or spaces that freely communicate with the outdoors. - 2. Fig. 7 illustrates how to provide TWO OUTDOOR OPENINGS, one inlet and one outlet combustion and ventilation air opening, to the outdoors. - a. One opening MUST commence within 12 in. (300 mm) of the ceiling and the second opening MUST commence within 12 in. (300 mm) of the floor. - b. Size openings and ducts per Fig. 7 and Table 1. - c. TWO HORIZONTAL DUCTS require 1 sq. in. (645 sq. mm) of free area per 2,000 Btuh (1,100 mm²/kW) of combined input for all gas appliances in the space per Fig. 7 and Table 1. - d. TWO OPENINGS OR VERTICAL DUCTS require 1 sq. in. (645 sq. mm) of free area per 4,000 Btuh (550 mm²/kW) for combined input of all gas appliances in the space per Fig. 7 and Table 1. - 3. ONE OUTDOOR OPENING requires: - a. 1 sq. in. (645 sq. mm) of free area per 3,000 Btuh (734 mm²/kW) for combined input of all gas appliances in the space per Table 1 and - b. Not less than the sum of the areas of all vent connectors in the space. $^{^{\}star}$ Minimum opening size is 100 sq in. (64516 sq. mm)with minimum dimensions of 3 in. (76 mm) † Minimum of 3 in. (76 mm) when type-B1 vent is used. A03175 Fig. 8 - Air for Combustion, Ventilation, and Dilution from Indoors The opening shall commence within 12 in. (300 mm) of the ceiling. Appliances in the space shall have clearances of at least 1 in. (25 mm) from the sides and back and 6 in. (150 mm) from the front. The opening shall directly communicate with the outdoors or shall communicate through a vertical or horizontal duct to the outdoors or spaces (crawl or attic) that freely communicate with the outdoors. Indoor Combustion Air® NFPA & AGA Standard and Known-Air-Infiltration Rate Methods Indoor air is permitted for combustion, ventilation, and dilution, if the Standard or Known-Air-Infiltration Method is used. ### **▲** WARNING #### CARBON MONOXIDE POISONING HAZARD Failure to follow this warning could result in personal injury or death. Many homes require air to be supplied from outdoors for furnace combustion, ventilation, and dilution of flue gases. The furnace combustion air supply must be provided in accordance with this instruction manual. #### The Standard Method - The space has no less volume than 50 cubic feet per 1,000 Btuh of the maximum input ratings for all gas appliances installed in the space and - 2. The air infiltration rate is not known to be less than 0.40 air changes per hour (ACH). The **Known Air Infiltration Rate** Method shall be used, if the infiltration rate is known to be: - 1. Less than 0.40 ACH and - 2. Equal to or greater than 0.10 ACH Infiltration rates greater than 0.60 ACH shall not be used. The minimum required volume of the space varies with the number of ACH and shall be determined per Table 2 or Equations 1 and 2. Determine the minimum required volume for each appliance in the space and add the volumes together to get the total minimum required volume for the space. **Table 2 - Minimum Space Volumes** were determined by using the following equations from the *National Fuel Gas Code ANSI Z223.1/NFPA 54, 9.3.2.2*: For other than fan-assisted appliances, such as a draft hood-equipped water heater: Volume Other = $$\frac{21 \text{ft}^3}{ACH} \left(\frac{I_{\text{other}}}{1000 \text{ Btu/hr}} \right)$$ A04002 2. For fan-assisted appliances such as this furnace: Volume Fan = $$\frac{15 \text{ft}^3}{\text{ACH}} \left(\frac{\text{I}_{\text{fan}}}{1000 \text{ Btu/hr}} \right)$$ A04003 If: Iother = combined input of all other than fan-assisted appliances in Btuh/hr Ifan = combined input of all fan-assisted appliances in Btuh/hr ACH = air changes per hour (ACH shall not exceed 0.60.) The following requirements apply to the **Standard** Method and to the **Known Air Infiltration Rate** Method. - 1. Adjoining rooms can be considered part of a space if: - a. There are no closeable doors between rooms. - b. Combining spaces on same floor level. Each opening shall have free area of at least 1 in.²/1,000 Btuh (2,000 mm²/kW) of the total input rating of all gas appliances in the space, but not less than 100 in.² (0.06 m²). One opening shall commence within 12 in. (300 mm) of the ceiling and the second opening shall commence within 12 in. (300 mm) of the floor. The minimum - dimension of air openings shall be at least 3 in. (80 mm). (See Fig. 8.) - c. Combining space on different floor levels. The volumes of spaces on different floor levels shall be considered as communicating spaces if connected by one or more permanent openings in doors or floors having free area of at least 2 in.²/1,000 Btuh (4,400 mm²/kW) of total input rating of all gas appliances. - 2. An attic or crawlspace may be considered a space that freely communicates with the outdoors provided there are adequate permanent ventilation openings directly to outdoors having free area of at least 1-in.²/4,000 Btuh of total input rating for all gas appliances in the space. - 3. In spaces that use the Indoor Combustion Air Method, infiltration should be adequate to provide air for combustion, permanent ventilation and dilution of flue gases. However, in buildings with unusually tight construction, additional air MUST be provided using the methods described in the Outdoor Combustion Air Method section. - 4. Unusually tight construction is defined as Construction with: - Walls and ceilings exposed to the outdoors have a continuous, sealed vapor barrier. Openings are gasketed or sealed and - b. Doors and openable windows are weatherstripped and - c. Other openings are caulked or sealed. These include joints around window and door frames, between sole plates and floors, between wall-ceiling joints, between wall panels, at penetrations for plumbing, electrical and gas lines, etc. #### Combination of Indoor and Outdoor Air - Indoor openings shall comply with the Indoor Combustion Air Method below and, - Outdoor openings shall be located as required in the Outdoor Combustion Air Method mentioned previously and, - 3. Outdoor openings shall be sized as follows: - a. Calculate the Ratio of all Indoor Space volume divided by required volume for **Indoor Combustion Air** Method below. - b. Outdoor opening size reduction **Factor** is 1 minus the **Ratio** in a. above. - c. Minimum size of Outdoor openings shall be the size required in **Outdoor Combustion Air** Method above multiplied by reduction **Factor** in b. above. The minimum dimension of air openings shall be not less than 3 in. (80 mm). Table 1 - Minimum Free Area Required for Each Combustion Air opening of Duct to Outdoors | | TWO HORIZONTA | L DUCTS | SINGLE DUCT OF | OPENING | TWO OPENINGS OR VE | RTICAL DUCTS | |-----------------|--|--------------------------------|--|--------------------------------|--|--------------------------------| | FURNACE | (1 SQ. IN./2,000 BTUH) (1 | ,100 SQ. MM/KW) | (1 SQ. IN./3,000 BTUH) (| 734 SQ. MM/KW) | (1 SQ. IN./4,000 BTUH) (| (550 SQ. MM/KW) | | INPUT
(BTUH) | Free Area of Opening
and Duct
Sq. In. (Sq. mm) | Round Duct
Dia.
In. (mm) | Free Area of Opening
and Duct
Sq. In. (Sq. mm) | Round Duct
Dia.
In. (mm) | Free Area of Opening
and Duct
Sq. In. (Sq. mm) | Round Duct
Dia.
In. (mm) | | 44,000 | 22 (14194) | 6 (152) | 14.7 (9484) | 5 (127) | 11 (7096) | 4 (102) | | 66,000 | 33 (21290) | 7 (178) | 22 (14193) | 6 (152) | 16.5 (10645) | 5 (127) | | 88,000 | 44 (28387)
| 8 (203) | 29.3 (18903) | 7 (178) | 22 (14193) | 6 (152) | | 110,000 | 55 (35484) | 9 (229) | 36.7 (23677) | 7 (178) | 27.5 (17742) | 6 (152) | | 132,000 | 66 (42580) | 10 (254) | 44 (28387) | 8 (203) | 33 (21290) | 7 (178) | | 154,000 | 77 (49677) | 10 (254) | 51.3 (33096) | 9 (229) | 38.5 (24839) | 8 (203) | Note: Not all models have these sizes. | | | | E | XAMPLES: Determining | Free A | Area | |---------|---|--------------|---|----------------------------|--------|--| | FURNACE | | WATER HEATER | | TOTAL INPUT | | | | 110,000 | + | 30,000 | = | (140,000 divided by 4,000) | = | 35.0 Sq. In. for each two Vertical Ducts or Openings | | 66,000 | + | 40,000 | = | (106,000 divided by 3,000) | = | 35.3 Sq. In. for a Single Duct or Opening | | 88,000 | + | 30,000 | = | (118,000 divided by 2,000) | = | 59.0 Sq. In. for each of two Horizontal Ducts | Table 2 - Minimum Space Volumes for 100% Combustion, Ventilation, and Dilution from Indoors | | IER THAN FAN
,000'S BTUH (| | | | FAN-ASSISTED TOTAL
(1,000'S BTUH GAS INPUT RATE) | | | | | | | | |------|-------------------------------|------------------|---------------|-----------------|---|------------------|------------------|------------------|-------------------|--|--|--| | 4011 | 30 | 40 | 50 | 44 | 66 | 88 | 110 | 132 | 154 | | | | | ACH | | • | , | Spac | e Volume Ft ³ (N | M^3) | | • | | | | | | 0.60 | 1,050 | 1,400 | 1,750 | 1,100 | 1,650 | 2,200 | 2,750 | 3,300 | 3,850 | | | | | | (29.7) | (39.6) | (49.5) | (31.1) | (46.7) | (62.2) | (77.8) | (93.4) | (109.0) | | | | | 0.50 | 1,260 | 1,680 | 2,100 | 1,320 | 1,980 | 2,640 | 3,300 | 3,960 | 4,620 | | | | | | (35.6) | (47.5) | (59.4) | (37.3) | (56.0) | (74.7) | (93.4) | (112.1) | (130.8) | | | | | 0.40 | 1,575 | 2,100 | 2,625 | 1,650 | 2,475 | 3,300 | 4,125 | 4,950 | 5,775 | | | | | | (44.5) | (59.4) | (74.3) | (46.7) | (70.0) | (93.4) | (116.8) | (140.1) | (163.5) | | | | | 0.30 | 2,100 | 2,800 | 3,500 | 2,200 | 3,300 | 4,400 | 5,500 | 6,600 | 7,700 | | | | | | (59.4) | (79.2) | (99.1) | (62.2) | (93.4) | (124.5) | (155.7) | (186.8) | (218.0) | | | | | 0.20 | 3,150
(89.1) | 4,200
(118.9) | 5,250 (148.6) | 3,300
(93.4) | 4,950
(140.1) | 6,600
(186.8) | 8,250
(233.6) | 9,900
(280.3) | 11,550
(327.0) | | | | | 0.10 | 6,300 | 8,400 | 10,500 | 6,600 | 9,900 | 13,200 | 16,500 | 19,800 | 23,100 | | | | | | (178.3) | (237.8) | (297.3) | (186.8) | (280.3) | (373.7) | (467.2) | (560.6) | (654.1) | | | | | 0.00 | NP | | | NP = Not Permitted Note: Not all models have these sizes. #### INSTALLATION #### **UPFLOW INSTALLATION** #### **Bottom Return Air Inlet** These furnaces are shipped with bottom closure panel installed in bottom return-air opening. Remove and discard this panel when bottom return air is used. To remove bottom closure panel, perform the following: - 1. Tilt or raise furnace and remove 2 screws holding bottom filler panel. (See Fig. 9.) - 2. Rotate bottom filler panel downward to release holding tabs. - 3. Remove bottom closure panel. - 4. Reinstall bottom filler panel and screws. #### Side Return Air Inlet These furnaces are shipped with bottom closure panel installed in bottom return-air opening. This panel MUST be in place when only side return air is used. A10273 Fig. 9 - Removing Bottom Closure Panel **NOTE**: Side return-air openings can be used in UPFLOW and most HORIZONTAL configurations. Do not use side return-air openings in DOWNFLOW configuration. #### Leveling Legs (If Desired) In upflow position with side return inlet(s), leveling legs may be used. (See Fig. 10.) Install field-supplied, 5/16 X 1-1/2 in. (8 X 38 mm) (max) corrosion-resistant machine bolts, washers and nuts. A89014 Fig. 10 - Leveling Legs **NOTE**: Bottom closure must be used when leveling legs are used. It may be necessary to remove and reinstall bottom closure panel to install leveling legs. To remove bottom closure panel, see Item 1 in Bottom Return Air Inlet section in Step 1 above. To install leveling legs: - 1. Position furnace on its back. Locate and drill a hole in each bottom corner of furnace. (See Fig. 10.) - 2. For each leg, install nut on bolt and then install bolt with nut in hole. (Install flat washer if desired.) - 3. Install another nut on other side of furnace base. (Install flat washer if desired.) - 4. Adjust outside nut to provide desired height, and tighten inside nut to secure arrangement. - 5. Reinstall bottom closure panel if removed. #### **DOWNFLOW INSTALLATION** **NOTE**: For downflow applications, this furnace is approved for use on combustible flooring when any one of the following 3 accessories are used: - Special Base, KGASB - Cased Coil Assembly Part No. CNPV, CNRV, CAP, or CAR - Coil Box Part No. KCAKC - 1. Determine application being installed from Table 3. - 2. Construct hole in floor per Table 3 and Fig. 11. - 3. Construct plenum to dimensions specified in Table 3 and Fig. 11. - 4. If downflow subbase, KGASB is used, install as shown in Fig. 12. If Coil Assembly Part No. CPVP, CAPMP or CN-PVP Coil Box Part No. KCAKC is used, install as shown in Fig. 13. **NOTE**: It is recommended that the perforated supply-air duct flanges be completely folded over or removed from furnace when installing the furnace on a factory-supplied cased coil or coil box. To remove the supply-air duct flange, use wide duct pliers or hand seamers to bend flange back and forth until it breaks off. Be careful of sharp edges. (See Fig. 14.) #### **Bottom Return Air Inlet** These furnaces are shipped with bottom closure panel installed in bottom return-air opening. Remove and discard this panel when bottom return air is used. To remove bottom closure panel, perform the following: - 1. Tilt or raise furnace and remove 2 screws holding bottom filler panel. (See Fig. 9.) - Rotate bottom filler panel downward to release holding tabs. - 3. Remove bottom closure panel. - 4. Reinstall bottom filler panel and screws. #### HORIZONTAL INSTALLATION ### **WARNING** ### FIRE, EXPLOSION, AND CARBON MONOXIDE POISONING HAZARD Failure to follow this warning could result in personal injury, death, or property damage. Do not install the furnace on its back or hang furnace with control compartment facing downward. Safety control operation will be adversely affected. Never connect return-air ducts to the back of the furnace. The furnace can be installed horizontally in an attic or crawlspace on either the left-hand (LH) or right-hand (RH) side. The furnace can be hung from floor joists, rafters or trusses or installed on a non-combustible platform, blocks, bricks or pad. #### Suspended Furnace Support The furnace may be supported under each end with threaded rod, angle iron or metal plumber's strap as shown. (See Fig. 15 and 16.) Secure angle iron to bottom of furnace as shown. Heavy-gauge sheet metal straps (plumber's straps) may be used to suspend the furnace from each bottom corner. To prevent screws from pulling out, use 2 #8 x 3/4 in. screws into the side and 2 #8 x in. screws in the bottom of the furnace casing for each strap. (See Fig. 15 and 16.) If the screws are attached to ONLY the furnace sides and not the bottom, the straps must be vertical against the furnace sides and not pull away from the furnace sides, so that the strap attachment screws are not in tension (are loaded in shear) for reliable support. #### Platform Furnace Support Construct working platform at location where all required furnace clearances are met. (See Fig. 2 and 17.) For furnaces with 1-in. (25 mm) clearance requirement on side, set furnace on non-combustible blocks, bricks or angle iron. For crawlspace installations, if the furnace is not suspended from the floor joists, the ground underneath furnace must be level and the furnace set on blocks or bricks. A96283 Fig. 11 - Floor and Plenum Opening Dimensions #### Roll-Out Protection Provide a minimum 17-3/4-in. X 22-in. (451 X 559 mm) piece of sheet metal for flame roll-out protection in front of burner area for furnaces closer than 12-in. (305 mm) above the combustible deck or suspended furnaces closer than 12-in. (305 mm) to joists. The sheet metal MUST extend underneath the furnace casing by 1-in. (25 mm)with the door removed. The bottom closure panel on furnaces of widths 17-1/2-in. (445 mm) and larger may be used for flame roll-out protection when bottom of furnace is used for return air connection. See Fig. 17 for proper orientation of roll-out shield. #### **Bottom Return Air Inlet** These furnaces are shipped with bottom closure panel installed in bottom return-air opening. Remove and discard this panel when bottom return air is used. To remove bottom closure panel, perform the following: 1. Tilt or raise furnace and remove two screws holding bottom filler panel. (See Fig. 9.) - Rotate bottom filler panel downward to release holding tabs. - 3. Remove bottom closure panel. - 4. Reinstall bottom filler panel and screws. #### **Side Return Air Inlet** These furnaces are shipped with bottom closure panel installed in bottom return-air opening. This panel MUST be in place when side return air inlet(s) are used without a bottom return air inlet. Not all horizontal furnaces are approved for side return air connections (See Fig. 20.) Fig. 12 - Furnace, Plenum, and Subbase Installed on a Combustible Floor Fig. 13 - Furnace, Plenum, and Coil Assembly or Coil Box Installed on a Combustible Floor Table 3 – Opening Dimensions - In. (mm) | FURNACE
CASING | APPLICATION | PLENUM C | PENING | FLOOR C | PENING | |-------------------|--|----------|--------|---------|--------| | WIDTH | | Α | В | С | D | | | Upflow Applications on Combustible or Noncombustible | 12-11/16 | 21-5/8 | 13-5/16 | 22-1/4 | | | Flooring (subbase not required) | (322) | (549) | (338) | (565) | | | Downflow Applications on Noncombustible Flooring |
12-9/16 | 19 | 13-3/16 | 19-5/8 | | 14-3/16 | (subbase not required) | (319) | (483) | (335) | (498) | | (360) | Downflow Applications on Combustible Flooring | 11-13/16 | 19 | 13-7/16 | 20-5/8 | | | (subbase required) | (284) | (483) | (341) | (600) | | | Downflow Applications on Combustible Flooring with Cased | 12-5/16 | 19 | 13-5/16 | 20 | | | Coil (subbase not required) | (319) | (483) | (338) | (508) | | | Upflow Applications on Combustible or Noncombustible | 16 | 21-5/8 | 16-5/8 | 22-1/4 | | | Flooring (subbase not required) | (406) | (549) | (422) | (565) | | | Downflow Applications on Noncombustible Flooring | 15-7/8 | 19 | 16-1/2 | 19-5/8 | | 17-1/2 | (subbase not required) | (403) | (483) | (419) | (498) | | (445) | Downflow Applications on Combustible Flooring | 15-1/8 | 19 | 16-3/4 | 20-5/8 | | | (subbase required) | (384) | (483) | (425) | (600) | | | Downflow Applications on Combustible Flooring with Cased | 15-1/2 | 19 | 16-1/2 | 20 | | | Coil (subbase not required) | (394) | (483) | (419) | (508) | | | Upflow Applications on Combustible or Noncombustible | 19-1/2 | 21-5/8 | 20-1/8 | 22-1/4 | | | Flooring (subbase not required) | (495) | (549) | (511) | (565) | | | Downflow Applications on Noncombustible Flooring | 19-3/8 | 19 | 20 | 19-5/8 | | 21 | (subbase not required) | (492) | (483) | (508) | (498) | | (533) | Downflow Applications on Combustible Flooring | 18-5/8 | 19 | 20-1/4 | 20-5/8 | | | (subbase required) | (473) | (483) | (514) | (600) | | | Downflow Applications on Combustible Flooring with Cased | 19 | 19 | 20 | 20 | | | Coil (subbase not required) | (483) | (483) | (508) | (508) | | | Upflow Applications on Combustible or Noncombustible | 23 | 21-1/8 | 23-5/8 | 22-1/4 | | | Flooring (subbase not required) | (584) | (537) | (600) | (565) | | | Downflow Applications on Noncombustible Flooring | 22-7/8 | 19 | 23-1/2 | 19-5/8 | | 24-1/2 | (subbase not required) | (581) | (483) | (597) | (498) | | (622) | Downflow Applications on Combustible Flooring | 22-1/8 | 19 | 23-3/4 | 20-5/8 | | • • | (subbase required) | (562) | (483) | (603) | (600) | | | Downflow Applications on Combustible Flooring with Cased | 22-1/2 | 19 | 23-1/2 | 20 | | | Coil (subbase not required) | (572) | (483) | (597) | (508) | #### Filter Arrangement ### **A** WARNING #### CARBON MONOXIDE POISONING HAZARD Failure to follow this warning could result in personal injury, or death. Never operate a furnace without a filter or with filter access door removed. There are no provisions for an internal filter rack in these furnaces. A field-supplied accessory external filter rack is required. Refer to the instructions supplied with the external filter rack for assembly and installation options. #### AIR DUCTS #### **General Requirements** The duct system should be designed and sized according to accepted national standards such as those published by: Air Conditioning Contractors Association (ACCA), Sheet Metal and Air Conditioning Contractors National Association (SMACNA) or American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) or consult *The Air Systems Design Guidelines* reference tables available from your local distributor. The duct system should be sized to handle the required system design CFM at the design external static pressure. The furnace airflow rates are provided in Table 4-Air Delivery-CFM (With Filter). When a furnace is installed so that the supply ducts carry air circulated by the furnace to areas outside the space containing the furnace, the return air shall also be handled by duct(s) sealed to the furnace casing and terminating outside the space containing the furnace. Secure ductwork with proper fasteners for type of ductwork used. Seal supply- and return-duct connections to furnace with code approved tape or duct sealer. **NOTE**: Flexible connections should be used between ductwork and furnace to prevent transmission of vibration. Ductwork passing through unconditioned space should be insulated to enhance system performance. When air conditioning is used, a vapor barrier is recommended. Maintain a 1-in. (25 mm) clearance from combustible materials to supply air ductwork for a distance of 36-in. (914 mm) horizontally from the furnace. See NFPA 90B or local code for further requirements. #### **Ductwork Acoustical Treatment** NOTE: Metal duct systems that do not have a 90 degree elbow and 10 ft. (3 M) of main duct to the first branch take-off may require internal acoustical lining. As an alternative, fibrous ductwork may be used if constructed and installed in accordance with the latest edition of SMACNA construction standard on fibrous glass ducts. Both acoustical lining and fibrous ductwork shall comply with NFPA 90B as tested by UL Standard 181 for Class 1 Rigid air ducts. #### **Supply Air Connections** For a furnace not equipped with a cooling coil, the outlet duct shall be provided with a removable access panel. This opening shall be accessible when the furnace is installed and shall be of such a size that the heat exchanger can be viewed for possible openings using light assistance or a probe can be inserted for sampling the air stream. The cover attachment shall prevent leaks. #### **Upflow and Horizontal Furnaces** Connect supply-air duct to flanges on furnace supply-air outlet. Bend flange upward to 90° with wide duct pliers. (See Fig. 14.) The supply-air duct must be connected to ONLY the furnace supply-outlet-air duct flanges or air conditioning coil casing (when used). DO NOT cut main furnace casing side to attach supply air duct, humidifier, or other accessories. All accessories MUST be connected to duct external to furnace main casing. **NOTE**: For horizontal applications, the top most flange may be bent past 90° to allow the evaporator coil to hang on the flange temporarily while the remaining attachment and sealing of the coil are performed. supply-air duct must be connected to ONLY the furnace supply outlet or air conditioning coil casing (when used). When installed on combustible material, supply-air duct must be connected to ONLY the factory-approved accessory subbase, or a factory-approved air conditioning coil casing. DO NOT cut main furnace casing to attach supply side air duct, humidifier, or other accessories. All accessories MUST be connected to duct external to furnace casing. #### **Downflow Furnaces** Connect supply-air duct to supply-air outlet on furnace. Bend flange inward past 90° with wide duct pliers (See Fig. 14.) The Fig. 14 - Duct Flanges OUTER DOOR ASSEMBLY 8" (203mm) MIN FOR DOOR REMOVAL 1" (25mm) SQUARE, 1-1/4"×1-1/4"×1/8" (32x32x3mm) ANGLE IRON OR UNI-STRUT MAY BE USED A10130 Fig. 15 - Horizontal Unit Suspension Fig. 16 - Horizontal Suspension with Straps Fig. 17 - Typical Attic Installation Fig. 18 - Upflow Return Air Configurations and Restrictions A190270 A190271 Fig. 19 - Downflow Return Air Configurations and Restrictions Fig. 20 - Horizontal Return Air Configurations and Restrictions #### Table 4 – Air Delivery - CFM (With Filter)* | Unit Size: 045V17-16 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | Cig/CF SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON | 5 and SW: Switch si SW2-7 OFF ON ON OFF ON ON ON OFF OFF ON ON OFF OFF | 2-2 set to ettings SW2-6 OFF ON OFF ON OFF ON OFF ON OFF ON OFF | | | 0.3 1445 530 715 940 1125 1320 1445 1445 530 715 940 1125 1320 1445 1445 1445 | d. See I | | and 2.) | re (ESP) 0.7 1250 495 765 975 1180 1250 1250 1250 495 765 975 | 0.8 1200 See N 445 725 935 1145 1200 1200 1200 See N 445 725 935 | 395
680
900
1110
1140
1140
1140 | 1.0
1035
350
630
860
1030
1035
1035
1035 | |---|---
--|--|--|---|--|---|--|--|---|--|---|--| | Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | Cig/CF SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON | Switch since Switc | ettings SW2-6 OFF ON | 0.1
1525
655
825
1025
1200
1385
1525
1525
655
655
825
1025
1200
1385
1525
1525 | 0.2
1490
590
770
980
1160
1350
1490
1490
590
590
770
980
1160
1350
1490 | 0.3
1445
530
715
940
1125
1320
1445
1445
530
530
715
940
1125
1320
1445
1445 | Externa
0.4
1400
465
665
895
1085
1285
1400
1400
465
465
665
895
1085
1285
1400 | 1 Static 0.5 1350 390 615 850 1050 1250 1350 390 390 615 850 1050 1250 | Pressur 0.6 1300 335 560 810 1010 1215 1300 1300 1300 335 560 810 1010 | 0.7
1250
495
765
975
1180
1250
1250
1250
495
765
975 | 1200 See N 445 725 935 1145 1200 1200 See N See N 445 725 | 1140
lote 4
395
680
900
1110
1140
1140
1140
Note 4
lote 4
395
680 | 350
630
860
1030
1035
1035
350 | | Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF OFF OFF ON | SW2-7 OFF OFF ON ON OFF ON ON OFF OFF ON ON OFF OFF | SW2-6 OFF ON | 1525
655
825
1025
1200
1385
1525
1525
1525
655
825
1025
1200
1385
1525
1525 | 1490
590
770
980
1160
1350
1490
1490
590
590
770
980
1160
1350
1490
1490 | 0.3
1445
530
715
940
1125
1320
1445
1445
530
715
940
1125
1320
1445
1445 | 0.4
1400
465
665
895
1085
1285
1400
1400
465
465
665
895
1085
1285
1400 | 0.5
1350
390
615
850
1050
1250
1350
1350
390
390
615
850
1050
1250 | 0.6
1300
335
560
810
1010
1215
1300
1300
335
335
560
810
1010 | 0.7
1250
495
765
975
1180
1250
1250
1250
495
765
975 | 1200 See N 445 725 935 1145 1200 1200 See N See N 445 725 | 1140
lote 4
395
680
900
1110
1140
1140
1140
Note 4
lote 4
395
680 | 350
630
860
1030
1035
1035
350 | | Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) | OFF OFF OFF ON ON ON ON Maxim SW2-5 OFF OFF OFF ON | OFF OFF ON ON OFF ON ON ON ON ON ON OFF OFF | OFF ON | 1525
655
825
1025
1200
1385
1525
1525
1525
655
825
1025
1200
1385
1525
1525 | 1490
590
770
980
1160
1350
1490
1490
590
590
770
980
1160
1350
1490
1490 | 1445
530
715
940
1125
1320
1445
1445
530
530
715
940
1125
1320
1445 | 1400
465
665
895
1085
1285
1400
1400
465
465
665
895
1085
1285
1400 | 1350
390
615
850
1050
1250
1350
1350
390
390
615
850
1050
1250 | 1300
335
560
810
1010
1215
1300
1300
335
335
560
810
1010 | 1250
495
765
975
1180
1250
1250
1250
495
765
975 | 1200 See N 445 725 935 1145 1200 1200 See N See N 445 725 | 1140
lote 4
395
680
900
1110
1140
1140
1140
Note 4
lote 4
395
680 | 350
630
860
1030
1035
1035
350 | | CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | OFF OFF ON ON ON ON Maxim SW2-5 OFF OFF OFF ON ON ON ON OFF OFF OFF OFF | ON ON ON OFF OFF ON ON ON OFF OFF ON ON OFF ON ON OFF ON ON OFF ON ON OFF OFF | OFF ON | 825
1025
1200
1385
1525
1525
1525
655
655
825
1025
1200
1385
1525
1525 | 770
980
1160
1350
1490
1490
590
590
770
980
1160
1350
1490 | 715
940
1125
1320
1445
1445
1445
530
715
940
1125
1320
1445
1445 | 665
895
1085
1285
1400
1400
465
465
665
895
1085
1285 | 615
850
1050
1250
1350
1350
390
390
615
850
1050
1250 | 560
810
1010
1215
1300
1300
335
335
560
810
1010 | 765
975
1180
1250
1250
1250
495
765
975 | 445
725
935
1145
1200
1200
See N
See N
445
725 | 395
680
900
1110
1140
1140
1140
Note 4
Note 4
395
680 | 630
860
1030
1035
1035
1035 | | CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | OFF ON ON ON ON Maxim SW2-5 OFF OFF OFF ON ON ON OFF OFF OFF OFF OF | ON OFF OFF ON ON ON ON OFF OFF ON ON OFF ON ON OFF ON ON OFF ON OFF ON ON OFF ON OFF ON ON OFF | ON OFF | 1025
1200
1385
1525
1525
1525
655
655
825
1025
1200
1385
1525
1525 | 980
1160
1350
1490
1490
590
590
770
980
1160
1350
1490 | 940
1125
1320
1445
1445
1445
530
715
940
1125
1320
1445 | 895
1085
1285
1400
1400
1400
465
465
665
895
1085
1285
1400 | 850
1050
1250
1350
1350
390
390
615
850
1050
1250 | 810
1010
1215
1300
1300
1300
335
335
560
810
1010 | 765
975
1180
1250
1250
1250
495
765
975 | 725
935
1145
1200
1200
1200
See N
See N
445
725 | 900
1110
1140
1140
1140
10te 4
Jote 4
395
680 | 630
860
1030
1035
1035
1035 | | CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | ON ON ON ON Maxim SW2-5 OFF OFF OFF ON ON ON OFF OFF OFF OFF OF | OFF OFF ON ON ON OFF OFF ON ON OFF OFF O | OFF ON | 1200
1385
1525
1525
1525
655
655
825
1025
1200
1385
1525
1525 | 1160
1350
1490
1490
1490
590
590
770
980
1160
1350
1490 | 1125
1320
1445
1445
1445
530
530
715
940
1125
1320
1445 | 1085
1285
1400
1400
1400
465
465
665
895
1085
1285
1400 | 1050
1250
1350
1350
1350
390
390
615
850
1050
1250 | 1010
1215
1300
1300
1300
335
335
560
810
1010 | 975
1180
1250
1250
1250
1250
495
765
975 |
935
1145
1200
1200
1200
See N
See N
445
725 | 900
1110
1140
1140
1140
10te 4
Note 4
395
680 | 860
1030
1035
1035
1035
350 | | CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | ON ON ON Maxim SW2-5 OFF OFF OFF ON ON ON OFF OFF OFF OFF OF | OFF ON ON ON OFF OFF ON ON OFF OFF ON ON OFF ON ON OFF OFF | ON OFF ON rflow ² SW2-3 OFF ON OFF ON OFF ON OFF ON OFF ON OFF | 1385
1525
1525
1525
655
655
825
1025
1200
1385
1525
1525 | 1350
1490
1490
1490
590
590
770
980
1160
1350
1490 | 1320
1445
1445
1445
530
530
715
940
1125
1320
1445 | 1285
1400
1400
1400
465
465
665
895
1085
1285
1400 | 1250
1350
1350
1350
390
390
615
850
1050
1250 | 1215
1300
1300
1300
335
335
560
810
1010 | 1180
1250
1250
1250
1250
495
765
975 | 1145
1200
1200
1200
See N
See N
445
725 | 1110
1140
1140
1140
Note 4
Note 4
395
680 | 1030
1035
1035
1035
350 | | CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | ON ON Maxim SW2-5 OFF OFF OFF ON ON ON OFF OFF OFF OFF OF | ON ON ON ON ON OFF OFF ON ON OFF ON ON OFF ON ON OFF ON ON OFF OFF | OFF ON rflow ² SW2-3 OFF ON OFF ON OFF ON OFF ON OFF ON OFF | 1525
1525
1525
1525
655
655
825
1025
1200
1385
1525
1525 | 1490
1490
1490
590
590
770
980
1160
1350
1490 | 1445
1445
1445
530
530
715
940
1125
1320
1445 | 1400
1400
1400
465
465
665
895
1085
1285
1400 | 1350
1350
1350
390
390
615
850
1050
1250 | 1300
1300
1300
335
335
560
810
1010 | 1250
1250
1250
1250
495
765
975 | 1200
1200
1200
See N
See N
445
725 | 1140
1140
1140
Note 4
Note 4
395
680 | 1035
1035
1035
350 | | Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | ON Maxim SW2-5 OFF OFF OFF ON ON ON ON OFF OFF OFF OFF OFF OFF OFF OFF ON O | ON num Clg Ai SW2-4 OFF OFF ON ON OFF OFF ON ON OFF OFF ON ON OFF OFF | ON rflow ² SW2-3 OFF ON OFF ON OFF ON OFF ON OFF ON OFF | 1525
1525
655
655
825
1025
1200
1385
1525
1525 | 1490
1490
590
590
770
980
1160
1350
1490 | 1445
1445
530
530
715
940
1125
1320
1445
1445 | 1400
1400
465
465
665
895
1085
1285
1400 | 1350
1350
390
390
615
850
1050
1250 | 1300
1300
335
335
560
810
1010 | 1250
1250
495
765
975 | 1200
1200
See N
See N
445
725 | 1140
1140
Note 4
Note 4
395
680 | 1035
1035
350 | | Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | Maxim SW2-5 OFF OFF OFF ON ON ON OFF OFF OFF OFF OF | OFF ON ON OFF ON ON OFF ON ON ON OFF ON ON OFF ON ON OFF ON ON OFF | rflow ² SW2-3 OFF ON OFF ON OFF ON OFF ON OFF ON OFF | 1525
655
655
825
1025
1200
1385
1525
1525 | 590
590
770
980
1160
1350
1490 | 530
530
715
940
1125
1320
1445
1445 | 1400
465
465
665
895
1085
1285
1400 | 390
390
615
850
1050
1250 | 335
335
560
810
1010 | 1250
495
765
975 | 1200
See N
See N
445
725 | 1140
Note 4
Note 4
395
680 | 1035
350 | | Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | SW2-5 OFF OFF OFF ON ON ON OFF OFF OFF OFF OF | SW2-4 OFF OFF ON ON OFF ON ON OFF ON ON | SW2-3 OFF ON OFF ON OFF ON OFF ON OFF ON OFF | 655
655
825
1025
1200
1385
1525
1525 | 590
590
770
980
1160
1350
1490 | 530
530
715
940
1125
1320
1445
1445 | 465
465
665
895
1085
1285
1400 | 390
390
615
850
1050
1250 | 335
335
560
810
1010 | 495
765
975 | See N
See N
445
725 | Note 4
Note 4
395
680 | 350 | | Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | OFF OFF ON ON ON OFF OFF OFF OFF OFF OFF | OFF OFF ON ON OFF OFF ON ON OFF OFF ON OFF OFF | OFF ON OFF ON OFF ON OFF ON OFF ON OFF | 655
825
1025
1200
1385
1525
1525 | 590
770
980
1160
1350
1490 | 530
715
940
1125
1320
1445
1445 | 465
665
895
1085
1285
1400 | 390
615
850
1050
1250 | 335
560
810
1010 | 765
975 | See N
445
725 | Note 4
395
680 | | | Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | OFF OFF ON ON ON ON OFF OFF OFF OFF OFF | OFF ON OFF OFF ON ON OFF OFF ON OFF OFF | ON OFF ON OFF ON OFF ON OFF ON OFF | 655
825
1025
1200
1385
1525
1525 | 590
770
980
1160
1350
1490 | 530
715
940
1125
1320
1445
1445 | 465
665
895
1085
1285
1400 | 390
615
850
1050
1250 | 335
560
810
1010 | 765
975 | See N
445
725 | Note 4
395
680 | | | Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | OFF OFF ON ON ON OFF OFF OFF OFF ON ON | ON ON OFF OFF ON ON OFF OFF ON OFF OFF O | OFF ON OFF ON OFF ON OFF ON OFF | 825
1025
1200
1385
1525
1525
655 | 770
980
1160
1350
1490
1490 | 715
940
1125
1320
1445
1445 | 665
895
1085
1285
1400 | 615
850
1050
1250 | 560
810
1010 | 765
975 | 445
725 | 395
680 | | | Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | OFF ON ON ON OFF OFF OFF OFF ON ON | ON OFF ON ON OFF OFF ON OFF OFF ON ON OFF | ON
OFF
ON
OFF
ON
OFF | 1025
1200
1385
1525
1525
655 | 980
1160
1350
1490
1490 | 940
1125
1320
1445
1445 | 895
1085
1285
1400 | 850
1050
1250 | 810
1010 | 765
975 | 725 | 680 | | | Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | ON ON ON OFF OFF OFF ON ON ON | OFF OFF ON ON OFF OFF ON ON OFF | OFF ON OFF ON OFF ON OFF | 1200
1385
1525
1525
655 | 1160
1350
1490
1490 | 1125
1320
1445
1445 | 1085
1285
1400 | 1050
1250 | 1010 | 975 | | | | | Cont. Fan Default: Continuous Fan (SW2-5,4,3) Heating (SW1) | ON ON ON OFF OFF OFF ON ON ON | OFF ON ON OFF OFF ON ON OFF | ON
OFF
ON
OFF
ON | 1385
1525
1525
655 | 1350
1490
1490 | 1320
1445
1445 | 1285
1400 | 1250 | | | | uilli | 860 | | Continuous Fan
(SW2-5,4,3)
Heating (SW1) | ON ON OFF OFF OFF ON ON ON | ON ON OFF | OFF
ON
OFF
ON
OFF | 1525
1525
655 | 1490
1490 | 1445
1445 | 1400 | | 1210 | 1180 | 1145 | 1110 | 1030 | | Continuous Fan
(SW2-5,4,3)
Heating (SW1) | ON OFF OFF OFF ON ON | ON OFF OFF ON ON OFF | ON OFF ON OFF | 1525
655 | 1490 | 1445 | | เออบ | 1300 | 1250 | 1200 | 1140 | 1035 | | Continuous Fan
(SW2-5,4,3)
Heating (SW1) | OFF OFF OFF ON ON | OFF OFF ON ON OFF | OFF
ON
OFF | 655 | | | | 1350 | 1300 | 1250 | 1200 | 1140 | 1035 | | Continuous Fan
(SW2-5,4,3)
Heating (SW1) | OFF OFF ON ON | OFF
ON
ON
OFF | ON
OFF | | 590 | E20 | | | | | | | | | (SW2-5,4,3) Heating (SW1) | OFF OFF ON ON | ON
ON
OFF | OFF | 655 | | 530 | 465 | 390 | 335 | | See N | lote 4 | | | (SW2-5,4,3) Heating (SW1) | OFF
ON
ON | ON
OFF | | | 590 | 530 | 465 | 390 | 335 | | See N | lote 4 | | | (SW2-5,4,3) Heating (SW1) | ON
ON
ON | OFF | ON | 825 | 770 | 715 | 665 | 615 | 560 | 495 | 445 | 395 | 350 | | (SW2-5,4,3) Heating (SW1) | ON
ON | - | | 1025 | 980 | 940 | 895 | 850 | 810 | 765 | 725 | 680 | 630 | | Heating (SW1) | ON | | OFF | 1025 | 980 | 940 | 895 | 850 | 810 | 765 | 725 | 680 | 630 | | <u> </u> | | OFF | ON | 1025 | 980 | 940 | 895 | 850 | 810 | 765 | 725 | 680 | 630 | | <u> </u> | | ON | OFF | 1025 | 980 | 940 | 895 | 850 | 810 | 765 | 725 | 680 | 630 | | <u> </u> | ON | ON | ON | 1025 | 980 | 940 | 895 | 850 | 810 | 765 | 725 | 680 | 630 | | <u> </u> | | | | | | | | | | | | | | | | Heat A | Airflow ³ | | 925 | 875 | 830 | 780 | 735 | 685 | 635 | 590 | 540 | 490 | | | | | | | | | | | | | | | | | Unit Size:
070V17-16 | Clg/CF | Switch s | ettings | External Static Pressure (ESP) | | | | | | | | | | | Clg Switches: | SW2-8 | SW2-7 | SW2-6 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | | Clg Default: | OFF | OFF | OFF | 1595 | 1560 | 1520 | 1485 | 1445 | 1410 | 1375 | 1335 | 1300 | 1265 | | Olg Doladii. | OFF | OFF | ON | 660 | 585 | 515 | 445 | 370 | 1110 | | ee Note | | 1200 | | | OFF | ON | OFF | 825 | 765 | 705 | 645 | 590 | 530 | 470 | 410 | 365 | 310 | | | OFF | ON | ON | 1025 | 970 | 915 | 860 | 810 | 760 | 705 | 640 | 585 | 530 | | Cooling | ON | OFF | OFF | 1225 | 1180 | 1135 | 1085 | 1040 | 995 | 950 | 910 | 865 | 820 | | (SW2-8,7,6) | ON | OFF | ON | 1390 | 1350 | 1305 | 1265 | 1225 | 1180 | 1140 | 1100 | 1060 | 1020 | | | ON | ON | OFF | 1595 | 1560 | 1520 | 1485 | 1445 | 1410 | 1375 | 1335 | 1300 | 1265 | | | ON | ON | ON | 1855 | 1815 | 1785 | 1750 | 1720 | 1675 | 1625 | 1575 | 1525 | 1475 | | | Maxim | num Clg Ai | rflow ² | 1855 | 1815 | 1785 | 1750 | 1720 | 1675 | 1625 | 1575 | 1525 | 1475 | | CF Switches | SW2-5 | SW2-4 | SW2-3 | | | | | | | | | | | | Low-Clg Default: | OFF | OFF | OFF | 660 | 585 | 515 | 445 | 370 | | | ee Note | | | | | OFF | OFF | ON | 660 | 585 | 515 | 445 | 370 | | S | ee Note | | | | | OFF | ON | OFF | 825 | 765 | 705 | 645 | 590 | 530 | 470 | 410 | 365 | 310 | | Low-Cooling | OFF | ON | ON | 1025 | 970 | 915 | 860 | 810 | 760 | 705 | 640 | 585 | 530 |
 (SW2-5,4,3) | ON | OFF | OFF | 1225 | 1180 | 1135 | 1085 | 1040 | 995 | 950 | 910 | 865 | 820 | | ,, ., -/ | ON | OFF | ON | 1390 | 1350 | 1305 | 1265 | 1225 | 1180 | 1140 | 1100 | 1060 | 1020 | | | ON | ON | OFF | 1595 | 1560 | 1520 | 1485 | 1445 | 1410 | 1375 | 1335 | 1300 | 1265 | | | ON | ON | ON | 1855 | 1815 | 1785 | 1750 | 1720 | 1675 | 1625 | 1575 | 1525 | 1475 | | Cont. Eon Default | OFF | OFF | OFF | 660 | EOF | E1E | AAE | 270 | | | oo Not- | 1 | | | Cont. Fan Default: | OFF
OFF | OFF
OFF | OFF
ON | 660
660 | 585
585 | 515
515 | 445
445 | 370
370 | | | ee Note
ee Note | | | | | UFF | OFF | OFF | 825 | 765 | 705 | 645 | 590 | 530 | 470 | 410 | 365 | 310 | | | | | OFF | 1025 | 970 | 915 | 860 | 810 | 760 | 705 | 640 | 585 | 530 | | | OFF | l (INI | OFF | 1025 | 970 | 915 | 860 | 810 | 760 | 705 | 640 | 585 | 530 | | Continuous Fan | OFF
OFF | OFF | | 1025 | 970 | 915 | 860 | | 760 | | U-U | UUI | , ,,,,,,, | | Continuous Fan
(SW2-5,4,3) | OFF
OFF
ON | OFF | | | | 5.5 | | י יווט | / / / / / / | 705 | 640 | | | | | OFF
OFF
ON
ON | OFF
OFF | ON | 1025 | 970 | 915 | | 810
810 | | 705
705 | 640
640 | 585 | 530 | | | OFF
OFF
ON
ON | OFF
OFF
ON | ON
OFF | 1025
1025 | 970
970 | 915
915 | 860 | 810 | 760 | 705 | 640 | 585
585 | 530
530 | | | OFF
OFF
ON
ON | OFF
OFF | ON | 1025
1025 | 970
970 | 915
915 | | | | | | 585 | 530 | | | OFF
OFF
ON
ON
ON | OFF
OFF
ON | ON
OFF | | | | 860 | 810 | 760 | 705 | 640 | 585
585 | 530
530 | ### Table 4 - Air Delivery - CFM (With Filter)* (CONTINUED) | | COOLING | 4 AND HE
5 and SW | | R DELI | /ERY - (| CFM (Bo | ottom R | eturn5 V | /ith Filte | er) | | | | |---|--|---|---|---|--|--|---|--|--|--|---|--|---| | Unit Size:
070V21-20 | Clg/CF | Switch s | ettings | | | | Externa | I Static | Pressur | e (ESP) | | | | | Clg Switches: | SW2-8 | SW2-7 | SW2-6 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | | Clg Default: | OFF | OFF | OFF | 1930 | 1895 | 1855 | 1815 | 1775 | 1740 | 1700 | 1665 | 1630 | 1595 | | | OFF | OFF | ON | 810 | 735 | 660 | 585 | 505 | | | ee Note | | | | | OFF | ON | OFF | 1010 | 945 | 885 | 820 | 760 | 695 | 625 | 565 | 510 | 455 | | | OFF | ON | ON | 1205 | 1150 | 1090 | 1040 | 985 | 930 | 875 | 820 | 760 | 705 | | Cooling | ON | OFF | OFF | 1400 | 1345 | 1295 | 1245 | 1200 | 1155 | 1105 | 1060 | 1005 | 960 | | (SW2-8,7,6) | ON
ON | OFF
ON | ON
OFF | 1580
1930 | 1540
1895 | 1495
1855 | 1445
1815 | 1405
1775 | 1360
1740 | 1320
1700 | 1275
1665 | 1235
1630 | 1190
1595 | | | ON | ON | ON | 2245 | 2195 | 2145 | 2095 | 2045 | 1995 | 1935 | 1885 | 1835 | 1785 | | | | num Clg Ai | | 2245 | 2195 | 2145 | 2095 | 2045 | 1995 | 1935 | 1885 | 1835 | 1785 | | CF Switches | SW2-5 | SW2-4 | SW2-3 | 22.10 | 2100 | 2110 | 2000 | 20.0 | 1000 | 1000 | 1000 | 1000 | 1100 | | Low-Clg Default: | OFF
| OFF | OFF | 810 | 735 | 660 | 585 | 505 | | S | ee Note | 4 | | | Zow Olg Dolladii. | OFF | OFF | ON | 585 | 490 | 000 | 000 | 000 | See N | | 00 11010 | • | | | | OFF | ON | OFF | 810 | 735 | 660 | 585 | 505 | | | ee Note | 4 | | | | OFF | ON | ON | 1010 | 945 | 885 | 820 | 760 | 695 | 625 | 565 | 510 | 455 | | Low-Cooling
(SW2-5,4,3) | ON | OFF | OFF | 1205 | 1150 | 1090 | 1040 | 985 | 930 | 875 | 820 | 760 | 705 | | (3002-3,4,3) | ON | OFF | ON | 1400 | 1345 | 1295 | 1245 | 1200 | 1155 | 1105 | 1060 | 1005 | 960 | | | ON | ON | OFF | 1580 | 1540 | 1495 | 1445 | 1405 | 1360 | 1320 | 1275 | 1235 | 1190 | | | ON | ON | ON | 1930 | 1895 | 1855 | 1815 | 1775 | 1740 | 1700 | 1665 | 1630 | 1595 | | | | | | | | | | | | | | | | | Cont. Fan Default: | OFF | OFF | OFF | 810 | 735 | 660 | 585 | 505 | 0 1 | | ee Note | 4 | | | | OFF
OFF | OFF
ON | ON
OFF | 585
810 | 490
735 | 660 | 585 | 505 | See N | Note 4 | ee Note | 1 | | | | OFF | ON | ON | 1010 | 945 | 885 | 820 | 760 | 695 | 625 | 565 | 510 | 455 | | Continuous Fan | ON | OFF | OFF | 1205 | 1150 | 1090 | 1040 | 985 | 930 | 875 | 820 | 760 | 705 | | (SW2-5,4,3) | ON | OFF | ON | 1400 | 1345 | 1295 | 1245 | 1200 | 1155 | 1105 | 1060 | 1005 | 960 | | | ON | ON | OFF | 1400 | 1345 | 1295 | 1245 | 1200 | 1155 | 1105 | 1060 | 1005 | 960 | | | ON | ON | ON | 1400 | 1345 | 1295 | 1245 | 1200 | 1155 | 1105 | 1060 | 1005 | 960 | | | | | | | | | | | | | | | | | Heating (SW1) | Heat A | Airflow ³ | | 1435 | 1385 | 1335 | 1290 | 1245 | 1195 | 1145 | 1100 | 1050 | 1000 | | | | | | | • | | | | | | | | | | Unit Size:
090V21-20 | | Switch s | | | | | | I Static | Pressur | | | | | | 090V21-20
Clg Switches: | SW2-8 | SW2-7 | SW2-6 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | Pressur | 0.7 | 0.8 | 0.9 | 1.0 | | 090V21-20 | SW2-8
OFF | SW2-7
OFF | SW2-6
OFF | 1985 | 1935 | 1885 | 0.4
1835 | 0.5
1785 | Pressur | 0.7 | 0.8
1630 | 1583 | 1.0
1532 | | 090V21-20
Clg Switches: | SW2-8
OFF
OFF | SW2-7
OFF
OFF | SW2-6
OFF
ON | 1985
860 | 1935
755 | 1885
650 | 0.4
1835
545 | 0.5
1785
445 | Pressur 0.6 1735 | 0.7
1685
S | 0.8
1630
ee Note | 1583
4 | 1532 | | 090V21-20
Clg Switches: | SW2-8
OFF
OFF | SW2-7
OFF
OFF
ON | SW2-6
OFF
ON
OFF | 1985
860
1085 | 1935
755
1000 | 1885
650
910 | 0.4
1835
545
830 | 0.5
1785
445
735 | 0.6
1735
655 | 0.7
1685
S
565 | 0.8
1630
ee Note
485 | 1583
4
405 | 1532
310 | | 090V21-20 Clg Switches: Clg Default: | SW2-8 OFF OFF OFF | SW2-7
OFF
OFF
ON | SW2-6
OFF
ON
OFF | 1985
860
1085
1255 | 1935
755
1000
1180 | 1885
650
910
1105 | 0.4
1835
545
830
1025 | 0.5
1785
445
735
950 | 0.6
1735
655
870 | 0.7
1685
S
565
790 | 0.8
1630
ee Note
485
715 | 1583
4
405
640 | 310
570 | | 090V21-20 Clg Switches: Clg Default: Cooling | SW2-8 OFF OFF OFF ON | SW2-7 OFF OFF ON ON OFF | SW2-6 OFF ON OFF ON OFF | 1985
860
1085
1255
1425 | 1935
755
1000
1180
1355 | 1885
650
910
1105
1290 | 0.4
1835
545
830
1025
1220 | 0.5
1785
445
735
950
1150 | 0.6
1735
655
870
1085 | 0.7
1685
S
565
790
1015 | 0.8
1630
ee Note
485
715
940 | 1583
4
405
640
870 | 310
570
800 | | 090V21-20 Clg Switches: Clg Default: | SW2-8 OFF OFF OFF OFF ON ON | SW2-7 OFF OFF ON ON OFF OFF | SW2-6 OFF ON OFF ON OFF ON | 1985
860
1085
1255
1425
1630 | 1935
755
1000
1180
1355
1575 | 1885
650
910
1105
1290
1515 | 0.4
1835
545
830
1025
1220
1455 | 0.5
1785
445
735
950
1150
1395 | 0.6
1735
655
870
1085
1330 | 0.7
1685
S
565
790
1015
1270 | 0.8
1630
ee Note
485
715
940
1210 | 1583
4
405
640
870
1155 | 310
570
800
1090 | | 090V21-20 Clg Switches: Clg Default: Cooling | SW2-8 OFF OFF OFF ON ON ON | SW2-7 OFF OFF ON ON OFF OFF ON | SW2-6 OFF ON OFF ON OFF ON OFF | 1985
860
1085
1255
1425
1630
1985 | 1935
755
1000
1180
1355
1575
1935 | 1885
650
910
1105
1290
1515
1885 | 0.4
1835
545
830
1025
1220
1455
1835 | 0.5
1785
445
735
950
1150
1395
1785 | 0.6
1735
655
870
1085
1330
1735 | 0.7
1685
S
565
790
1015
1270
1685 | 0.8
1630
ee Note
485
715
940
1210
1630 | 1583
4
405
640
870
1155
1583 | 310
570
800
1090
1532 | | 090V21-20 Clg Switches: Clg Default: Cooling | SW2-8 OFF OFF OFF ON ON ON | SW2-7 OFF OFF ON ON OFF OFF ON OFF ON | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF | 1985
860
1085
1255
1425
1630
1985
2100 | 1935
755
1000
1180
1355
1575
1935
2055 | 1885
650
910
1105
1290
1515
1885
2010 | 0.4
1835
545
830
1025
1220
1455 | 0.5
1785
445
735
950
1150
1395
1785
1915 | 0.6
1735
655
870
1085
1330 | 0.7
1685
S
565
790
1015
1270 | 0.8
1630
ee Note
485
715
940
1210
1630
1775 | 1583
4
405
640
870
1155
1583
1715 | 310
570
800
1090
1532
1640 | | 090V21-20 Clg Switches: Clg Default: Cooling | SW2-8 OFF OFF OFF ON ON ON | SW2-7 OFF OFF ON ON OFF OFF ON ON ON ON ON ON ON | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF | 1985
860
1085
1255
1425
1630
1985 | 1935
755
1000
1180
1355
1575
1935 | 1885
650
910
1105
1290
1515
1885 | 0.4
1835
545
830
1025
1220
1455
1835
1960 | 0.5
1785
445
735
950
1150
1395
1785 | 0.6
1735
655
870
1085
1330
1735 | 0.7
1685
S
565
790
1015
1270
1685
1820 | 0.8
1630
ee Note
485
715
940
1210
1630 | 1583
4
405
640
870
1155
1583 | 310
570
800
1090
1532 | | 090V21-20 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches | SW2-8 OFF OFF OFF ON ON ON SW2-5 | SW2-7 OFF OFF ON ON OFF OFF ON ON SW2-4 | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF ON OFF | 1985
860
1085
1255
1425
1630
1985
2100 | 1935
755
1000
1180
1355
1575
1935
2055 | 1885
650
910
1105
1290
1515
1885
2010 | 0.4
1835
545
830
1025
1220
1455
1835
1960 | 0.5
1785
445
735
950
1150
1395
1785
1915 | 0.6
1735
655
870
1085
1330
1735 | 0.7
1685
S
565
790
1015
1270
1685
1820 | 0.8
1630
ee Note
485
715
940
1210
1630
1775 | 1583
4
405
640
870
1155
1583
1715
1715 | 310
570
800
1090
1532
1640 | | O90V21-20 Clg Switches: Clg Default: Cooling (SW2-8,7,6) | SW2-8 OFF OFF OFF ON ON ON Maxim | SW2-7 OFF OFF ON ON OFF OFF ON ON ON ON ON ON ON ON | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF SW2-3 | 1985
860
1085
1255
1425
1630
1985
2100
2100 | 1935
755
1000
1180
1355
1575
1935
2055
2055 | 1885
650
910
1105
1290
1515
1885
2010
2010 | 0.4
1835
545
830
1025
1220
1455
1835
1960 | 0.5
1785
445
735
950
1150
1395
1785
1915 | 0.6
1735
655
870
1085
1330
1735
1870 | 0.7
1685
S
565
790
1015
1270
1685
1820 | 0.8
1630
ee Note
485
715
940
1210
1630
1775 | 1583
4
405
640
870
1155
1583
1715
1715 | 310
570
800
1090
1532
1640 | | 090V21-20 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches | SW2-8 OFF OFF OFF ON ON ON SW2-5 OFF OFF | SW2-7 OFF OFF ON ON OFF OFF ON ON SW2-4 OFF | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF SW2-3 OFF | 1985
860
1085
1255
1425
1630
1985
2100
2100 | 1935
755
1000
1180
1355
1575
1935
2055
2055 | 1885
650
910
1105
1290
1515
1885
2010
2010 | 0.4
1835
545
830
1025
1220
1455
1835
1960 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915 | 0.6
1735
655
870
1085
1330
1735
1870 | 0.7
1685
\$
565
790
1015
1270
1685
1820
1820 | 0.8
1630
ee Note
485
715
940
1210
1630
1775 | 1583
4
405
640
870
1155
1583
1715
1715 | 310
570
800
1090
1532
1640 | | O90V21-20 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF | SW2-7 OFF ON ON OFF ON OFF ON ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
755
1000 | 1885
650
910
1105
1290
1515
1885
2010
2010
650 | 0.4
1835
545
830
1025
1220
1455
1835
1960
1960
545 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445 | 0.6
1735
655
870
1085
1330
1735
1870
1870 | 0.7
1685
\$
565
790
1015
1270
1685
1820
1820
Slote 4
\$ | 0.8
1630
ee Note
485
715
940
1210
1630
1775
1775
ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4 | 310
570
800
1090
1532
1640 | | O90V21-20 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling | SW2-8 OFF OFF OFF ON ON ON ON SW2-5 OFF OFF OFF OFF OFF OFF | SW2-7 OFF OFF ON ON OFF OFF ON ON SW2-4 OFF OFF ON ON OFF | SW2-6 OFF ON |
1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
755
1000
1180 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105 | 0.4
1835
545
830
1025
1220
1455
1835
1960
545
545
830
1025 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
445 | 0.6
1735
655
870
1085
1330
1735
1870
1870
See N | 0.7
1685
\$565
790
1015
1270
1685
1820
1820
\$Slote 4
\$S
565
790 | 0.8
1630
ee Note
485
715
940
1210
1630
1775
1775
ee Note
ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640 | 310
570
800
1090
1532
1640
1640
310
570 | | O90V21-20 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF OFF OFF ON | SW2-7 OFF OFF ON ON OFF ON ON ON ON ON ON ON ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
755
1000
1180 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290 | 0.4
1835
545
830
1025
1220
1455
1835
1960
1960
545
545
830
1025
1220 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
735
950
1150 | 0.6
1735
655
870
1085
1330
1735
1870
1870
See N | 0.7
1685
\$565
790
1015
1270
1685
1820
1820
\$Slote 4
\$S
565
790 | 0.8
1630
ee Note
485
715
940
1210
1630
1775
1775
ee Note
ee Note
485
715
940 | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870 | 310
570
800
1090
1532
1640
1640
310
570
800 | | O90V21-20 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF ON | SW2-7 OFF OFF ON ON OFF ON ON ON OFF ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
755
1000
1180
1355
1575 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
1515 | 0.4
1835
545
830
1025
1220
1455
1835
1960
1960
545
830
1025
1220
1455 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
735
950
1150
1395 | 97 Pressur 0.6 1735 655 870 1085 1330 1735 1870 1870 See N 655 870 1085 1330 | 0.7
1685
\$565
790
1015
1270
1685
1820
1820
\$Slote 4
\$565
790
1015
1270 | 0.8
1630
ee Note
485
715
940
1210
1630
1775
1775
ee Note
485
715
940
1210 | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155 | 310
570
800
1090
1532
1640
1640
310
570
800
1090 | | O90V21-20 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF OFF OFF ON | SW2-7 OFF OFF ON ON OFF ON ON ON ON ON ON ON ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
755
1000
1180 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290 | 0.4
1835
545
830
1025
1220
1455
1835
1960
1960
545
545
830
1025
1220 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
735
950
1150 | 0.6
1735
655
870
1085
1330
1735
1870
1870
See N | 0.7
1685
\$565
790
1015
1270
1685
1820
1820
\$Slote 4
\$S
565
790 | 0.8
1630
ee Note
485
715
940
1210
1630
1775
1775
ee Note
ee Note
485
715
940 | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870 | 310
570
800
1090
1532
1640
1640
310
570
800 | | Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF OFF ON ON ON ON | SW2-7 OFF ON ON OFF ON OFF ON ON ON OFF ON ON ON OFF ON ON | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630
1985 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
755
1000
1180
1355
1575
1935 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
1515
1885 | 0.4
1835
545
830
1025
1220
1455
1835
1960
545
830
1025
1220
1455
1835 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
735
950
1150
1395
1785 | 97 Pressur 0.6 1735 655 870 1085 1330 1735 1870 1870 See N 655 870 1085 1330 | 0.7
1685
\$565
790
1015
1270
1685
1820
1820
\$ Slote 4
\$ \$
565
790
1015
1270
1685 | 0.8
1630
ee Note
485
715
940
1210
1630
1775
1775
ee Note
485
715
940
1210
1630 | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583 | 310
570
800
1090
1532
1640
1640
310
570
800
1090 | | O90V21-20 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF ON ON ON ON ON OFF | SW2-7 OFF OFF ON ON OFF OFF ON ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630
1985 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
755
1000
1180
1355
1575
1935 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
1515 | 0.4
1835
545
830
1025
1220
1455
1835
1960
1960
545
830
1025
1220
1455 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
735
950
1150
1395 | 97 Pressur 0.6 1735 655 870 1085 1330 1735 1870 See N 655 870 1085 1330 1735 | 0.7
1685
\$565
790
1015
1270
1685
1820
1820
\$ Slote 4
\$ \$65
790
1015
1270
1685 | 0.8
1630
ee Note
485
715
940
1210
1630
1775
1775
ee Note
485
715
940
1210 | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583 | 310
570
800
1090
1532
1640
1640
310
570
800
1090 | | Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF ON ON ON ON ON OFF OFF OFF OFF | SW2-7 OFF OFF ON ON OFF ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630
1985 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
755
1000
1180
1355
1575
1935 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
1515
1885 | 0.4
1835
545
830
1025
1220
1455
1835
1960
1960
545
830
1025
1220
1455
1835
1025 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
445
735
950
1150
1395
1785 | 97 Pressur 0.6 1735 655 870 1085 1330 1735 1870 See N 655 870 1085 1330 1735 | 0.7 1685 S 565 790 1015 1270 1685 1820 1820 S lote 4 S 565 790 1015 1270 1685 | 0.8 1630 ee Note 485 715 940 1210 1630 1775 1775 ee Note 485 715 940 1210 1630 1630 ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583
4 | 310
570
800
1090
1532
1640
1640
310
570
800
1090 | | Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF OFF ON ON ON ON Maxin SW2-5 OFF OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630
1985
860
700
860 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
755
1000
1180
1355
1575
1935
755
575
755
755
755
755
755
7 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
650
910
1105
1290
1515
1885 | 0.4
1835
545
830
1025
1220
1455
1835
1960
545
545
545
545
545 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
445
735
950
1150
1395
1785 | 97 Pressur 0.6 1735 655 870 1085 1330 1735 1870 1870 See N 655 870 1085 1330 1735 | 0.7 1685 S 565 790 1015 1270 1685 1820 1820 S lote 4 S 565 790 1015 1270 1685 S lote 4 S S S | 0.8 1630 ee Note 485 715 940 1210 1630 1775 1775 ee Note 485 715 940 1210 1630 1630
ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583
4 | 310
570
800
1090
1532
1640
1640
310
570
800
1090
1532 | | Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF OFF ON ON ON ON Maxin SW2-5 OFF OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630
1985
860
700
860
1085 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
1000
1180
1355
1575
1935
1575
1935
1575
1000
1355
1575
1935
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
157 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
1515
1885
650
910 | 0.4
1835
545
830
1025
1220
1455
1835
1960
1960
545
830
1025
1220
1455
1835
1925
1245
1835
1925
1835
1925
1835
1930
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945 | 0.5
1785
445
735
950
1150
1395
1785
1915
445
445
735
950
1150
1395
1785
445
445 | 97 Pressur 0.6 1735 655 870 1085 1330 1735 1870 See N 655 870 1085 1330 1735 | 0.7 1685 S 565 790 1015 1270 1685 1820 1820 S lote 4 S 565 790 1015 1270 1685 S lote 4 S 565 S | 0.8 1630 ee Note 485 715 940 1210 1630 1775 1775 ee Note 485 715 940 1210 1630 1630 ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583
4
4 | 310
570
800
1090
1532
1640
1640
310
570
800
1090
1532 | | Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF OFF ON ON ON ON Maxin SW2-5 OFF OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630
1985
860
700
860
1085
1255 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
1000
1180
1355
1575
1935
1575
1000
1180
1355 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
1515
1885
650
910
1105 | 0.4 1835 545 830 1025 1220 1455 1835 1960 1960 545 830 1025 1220 1455 1835 545 830 1025 1220 1455 1835 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
735
950
1150
1395
1785
445
445
735 | 97 Pressur 0.6 1735 655 870 1085 1330 1735 1870 1870 See N 655 870 1085 1330 1735 | 0.7 1685 S 565 790 1015 1270 1685 1820 1820 S lote 4 S 565 790 1015 1270 1685 S lote 4 S S S | 0.8 1630 ee Note 485 715 940 1210 1630 1775 1775 ee Note 485 715 940 1210 1630 1630 ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583
4
4
4
4
4
4
4
4
4
4
4
4
4 | 310
570
800
1090
1532
1640
1640
310
570
800
1090
1532 | | Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF OFF ON ON ON ON Maxin SW2-5 OFF OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON ON OFF OFF ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630
1985
860
700
860
1085 |
1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
1000
1180
1355
1575
1935
1575
1935
1575
1000
1355
1575
1935
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
1575
157 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
1515
1885
650
910 | 0.4
1835
545
830
1025
1220
1455
1835
1960
1960
545
830
1025
1220
1455
1835
1925
1245
1835
1925
1835
1925
1835
1930
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945
1945 | 0.5
1785
445
735
950
1150
1395
1785
1915
445
445
735
950
1150
1395
1785
445
445 | 97 Pressur 0.6 1735 655 870 1085 1330 1735 1870 1870 See N 655 870 1085 1330 1735 | 0.7 1685 S 565 790 1015 1270 1685 1820 1820 S lote 4 S S lote 4 S S 565 790 | 0.8 1630 ee Note 485 715 940 1210 1630 1775 1775 ee Note 485 715 940 1210 1630 1630 ee Note 485 715 940 1210 1630 ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583
4
4 | 310
570
800
1090
1532
1640
1640
310
570
800
1090
1532 | | Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF ON ON ON ON Maxin SW2-5 OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
860
700
860
1085
1255
1425
1425 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
1000
1180
1355
575
755
1000
1180
1355 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
650
910
1105
1290
1515
1885 | 0.4 1835 545 830 1025 1220 1455 1835 1960 1960 545 830 1025 1220 1455 1835 545 830 1025 1220 1455 1835 | 0.5
1785
445
735
950
1150
1395
1785
1915
445
735
950
1150
1395
1785
445
445
735
950
1150 | 97 Pressur 0.6 1735 655 870 1085 1330 1735 1870 1870 See N 655 870 1085 1330 1735 | 0.7 1685 S 565 790 1015 1270 1685 1820 1820 S lote 4 S 565 790 1015 1270 1685 S lote 4 S 565 790 1015 | 0.8 1630 ee Note 485 715 940 1210 1630 1775 1775 ee Note 485 715 940 1210 1630 1630 ee Note 485 715 940 1210 1630 ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583
4
4
4
405
640
870 | 310
570
800
1090
1532
1640
1640
310
570
800
1090
1532 | | Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: Continuous Fan (SW2-5,4,3) | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630
1985
200
1085
1255
1425
1630
1085
1255
1425
1630 | 1935
755
1000
1180
1355
1575
1935
2055
2055
575
755
1000
1180
1355
1575
1935
755
1000
1180
1355
1575
1000
1180
1355 | 1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
1515
1885
650
910
1105
1290
1515 | 0.4 1835 545 830 1025 1220 1455 1835 1960 1960 545 545 830 1025 1220 1455 1835 545 545 1025 1220 1455 1835 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
735
950
1150
1395
1785
445
735
950
1150
1395
1785 | 9 Control | 0.7 1685 S 565 790 1015 1270 1685 1820 1820 S lote 4 S 565 790 1015 1270 1685 S lote 4 S 565 790 1015 1270 1685 | 0.8 1630 ee Note 485 715 940 1210 1630 1775 1775 ee Note 485 715 940 1210 1630 ee Note 485 715 940 1210 1630 ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583
4
4
405
640
870
1155 | 310
570
800
1090
1532
1640
1640
310
570
800
1090
1532
310
570
800
1090 | | Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF ON | SW2-7 OFF OFF ON ON OFF ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 1985
860
1085
1255
1425
1630
1985
2100
2100
860
700
860
1085
1255
1425
1630
1985
200
1085
1255
1425
1630 | 1935
755
1000
1180
1355
1575
1935
2055
2055
755
575
7000
1180
1355
1575
1000
1180
1355
1575
1000
1180
1355 |
1885
650
910
1105
1290
1515
1885
2010
2010
650
910
1105
1290
1515
1885
650
910
1105
1290
1515 | 0.4 1835 545 830 1025 1220 1455 1835 1960 1960 545 545 830 1025 1220 1455 1835 545 545 1025 1220 1455 1835 | 0.5
1785
445
735
950
1150
1395
1785
1915
1915
445
735
950
1150
1395
1785
445
445
735
950
1150
1395 | 9 Control | 0.7 1685 S 565 790 1015 1270 1685 1820 1820 S lote 4 S 565 790 1015 1270 1685 S lote 4 S 565 790 1015 1270 1685 | 0.8 1630 ee Note 485 715 940 1210 1630 1775 1775 ee Note 485 715 940 1210 1630 ee Note 485 715 940 1210 1630 ee Note | 1583
4
405
640
870
1155
1583
1715
1715
4
4
405
640
870
1155
1583
4
4
405
640
870
1155 | 310
570
800
1090
1532
1640
1640
310
570
800
1090
1532 | ### Table 4 - Air Delivery - CFM (With Filter)* (CONTINUED) | | COOLING | | EATING A | R DELI | /ERY - (| CFM (Bo | ottom R | eturn5 V | Vith Filte | er) | | | | |---|---|--|---|---|--|---|---|---|---|---|---|--|---| | Unit Size: | (SW1- | 5 and SW | 2-2 set to | OFF, ex | cept as | indicate | d. See I | Notes 1 | and 2.) | | | | | | 090V24-20 | | Switch s | | | | | | | | e (ESP) | | | | | Clg Switches: | SW2-8 | SW2-7 | SW2-6 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | | Clg Default: | OFF | OFF | OFF | 1970 | 1915 | 1865 | 1815 | 1765 | 1715 | 1660 | 1605 | 1545 | 1485 | | | OFF
OFF | OFF
ON | ON
OFF | 980
1115 | 885
1030 | 770
930 | 675
840 | 585
755 | 670 | 575 | ee Note
510 | 415 | 330 | | | OFF | ON | ON | 1280 | 1205 | 1130 | 1045 | 960 | 885 | 810 | 740 | 670 | 595 | | Cooling | ON | OFF | OFF | 1450 | 1380 | 1315 | 1250 | 1165 | 1090 | 1020 | 955 | 890 | 825 | | (SW2-8,7,6) | ON | OFF | ON | 1630 | 1570 | 1510 | 1450 | 1385 | 1320 | 1250 | 1185 | 1125 | 1070 | | (-, , -, | ON | ON | OFF | 1970 | 1915 | 1865 | 1815 | 1765 | 1715 | 1660 | 1605 | 1545 | 1485 | | | ON | ON | ON | 2135 | 2090 | 2035 | 1990 | 1940 | 1895 | 1850 | 1795 | 1745 | 1690 | | | Maxin | num Clg A | irflow ² | 2175 | 2125 | 2080 | 2030 | 1980 | 1935 | 1890 | 1840 | 1795 | 1735 | | CF Switches | SW2-5 | SW2-4 | SW2-3 | | | | | | | | | | | | Low-Clg Default: | OFF | OFF | OFF | 980 | 885 | 770 | 675 | 585 | | | ee Note | 4 | | | | OFF | OFF | ON | 790 | 670 | | | | See N | lote 4 | | | | | | OFF | ON | OFF | 980 | 885 | 770 | 675 | 585 | | | ee Note | | | | Low-Cooling | OFF | ON | ON | 1115 | 1030 | 930 | 840 | 755 | 670 | 575 | 510 | 415 | 330 | | (SW2-5,4,3) | ON
ON | OFF
OFF | OFF
ON | 1280
1450 | 1205
1380 | 1130
1315 | 1045
1250 | 960
1165 | 885
1090 | 810
1020 | 740
955 | 670
890 | 595
825 | | | ON | OFF | OFF | 1630 | 1570 | 1510 | 1450 | 1385 | 1320 | 1250 | 1185 | 1125 | 1070 | | | ON | ON | ON | 1970 | 1915 | 1865 | 1815 | 1765 | 1715 | 1660 | 1605 | 1545 | 1485 | | | 0.1 | OIV | OIV | 10.0 | 1010 | 1000 | 1010 | 1700 | 17 10 | 1000 | 1000 | 1010 | 1.00 | | Cont. Fan Default: | OFF | OFF | OFF | 980 | 885 | 770 | 675 | 585 | | S | ee Note | 4 | | | | OFF | OFF | ON | 790 | 670 | | | | See N | lote 4 | | | | | | OFF | ON | OFF | 980 | 885 | 770 | 675 | 585 | | S | ee Note | 4 | | | Continuous Fan | OFF | ON | ON | 1115 | 1030 | 930 | 840 | 755 | 670 | 575 | 510 | 415 | 330 | | (SW2-5,4,3) | ON | OFF | OFF | 1280 | 1205 | 1130 | 1045 | 960 | 885 | 810 | 740 | 670 | 595 | | (-, , -, | ON | OFF | ON | 1450 | 1380 | 1315 | 1250 | 1165 | 1090 | 1020 | 955 | 890 | 825 | | | ON | ON | OFF | 1630 | 1570 | 1510 | 1450 | 1385 | 1320 | 1250 | 1185 | 1125 | 1070 | | | ON | ON | ON | 1630 | 1570 | 1510 | 1450 | 1385 | 1320 | 1250 | 1185 | 1125 | 1070 | | Heating (SW1) | Heat A | l
Airflow ³ | | 1740 | 1680 | 1625 | 1570 | 1510 | 1445 | 1385 | 1325 | 1265 | 1205 | | riodaling (OTT) | i iout i | 11111011 | | | | | | | | | | | | | - · · / | 1 | | | | | | | 10.0 | | | | | | | Unit Size: | Cla/CF | Switch s | ettings | | | I | I | | | 1 | | | | | Unit Size:
110V24-22 | | Switch s | | | | | Externa | ıl Static | Pressur | e (ESP) | | | | | Unit Size:
110V24-22
Clg Switches: | SW2-8 | SW2-7 | SW2-6 | 0.1 | 0.2 | 0.3 | Externa
0.4 | I Static | Pressur | re (ESP) | 0.8 | 0.9 | 1.0 | | Unit Size:
110V24-22 | SW2-8
OFF | SW2-7
OFF | SW2-6
OFF | 0.1 | 0.2 | 0.3
1920 | 0.4
1865 | 0.5
1805 | Pressur | 0.7
1700 | 0.8
1640 | 0.9
1575 | | | Unit Size:
110V24-22
Clg Switches: | SW2-8
OFF | SW2-7
OFF
OFF | SW2-6
OFF
ON | 0.1
2040
910 | 0.2
1980
795 | 0.3
1920
690 | 0.4
1865
580 | 0.5
1805
495 | Pressur | 0.7
1700
S | 0.8
1640
ee Note | 0.9
1575
4 | 1.0 | | Unit Size:
110V24-22
Clg Switches: | SW2-8
OFF
OFF | SW2-7
OFF
OFF
ON | SW2-6
OFF
ON
OFF | 0.1
2040
910
1140 | 0.2
1980
795
1050 | 0.3
1920
690
955 | 0.4
1865
580
865 | 0.5
1805
495
775 | 0.6
1750 | 0.7
1700
Si | 0.8
1640
ee Note
ee Note | 0.9
1575
4
4 | 1.0
1525 | | Unit Size:
110V24-22
Clg Switches:
Clg Default: | SW2-8 OFF OFF OFF | SW2-7
OFF
OFF
ON | SW2-6
OFF
ON
OFF | 0.1
2040
910
1140
1305 | 0.2
1980
795
1050
1220 | 0.3
1920
690
955
1140 | 0.4
1865
580
865
1055 | 0.5
1805
495
775
975 | 0.6
1750
895 | 0.7
1700
Si
815 | 0.8
1640
ee Note
ee Note
745 | 0.9
1575
4
4
680 | 1.0
1525 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling | SW2-8 OFF OFF OFF ON | SW2-7
OFF
OFF
ON
ON | SW2-6
OFF
ON
OFF
ON | 0.1
2040
910
1140
1305
1480 | 0.2
1980
795
1050
1220
1405 | 0.3
1920
690
955
1140
1325 | 0.4
1865
580
865
1055
1255 | 0.5
1805
495
775
975
1180 | 0.6
1750
895
1105 | 9 (ESP) 0.7 1700 Si 815 1035 | 0.8
1640
ee Note
ee Note
745
975 | 0.9
1575
4
4
680
895 | 1.0
1525
605
830 | | Unit Size:
110V24-22
Clg Switches:
Clg Default: | SW2-8 OFF OFF OFF ON ON | SW2-7 OFF OFF ON ON OFF OFF | SW2-6 OFF ON OFF ON OFF ON |
0.1
2040
910
1140
1305 | 0.2
1980
795
1050
1220 | 0.3
1920
690
955
1140
1325
1540 | 0.4
1865
580
865
1055
1255 | 0.5
1805
495
775
975
1180
1415 | 0.6
1750
895
1105
1345 | 9 (ESP) 0.7 1700 Si 815 1035 1275 | 0.8
1640
ee Note
ee Note
745
975
1215 | 0.9
1575
4
4
680
895
1150 | 1.0
1525 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling | SW2-8 OFF OFF OFF ON ON ON | SW2-7 OFF OFF ON ON OFF OFF ON ON | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF | 0.1
2040
910
1140
1305
1480
1680 | 0.2
1980
795
1050
1220
1405
1610 | 0.3
1920
690
955
1140
1325 | 0.4
1865
580
865
1055
1255 | 0.5
1805
495
775
975
1180 | 0.6
1750
895
1105 | 9 (ESP) 0.7 1700 Si 815 1035 | 0.8
1640
ee Note
ee Note
745
975 | 0.9
1575
4
4
680
895 | 1.0
1525
605
830
1095 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling | SW2-8 OFF OFF OFF ON ON ON | SW2-7 OFF OFF ON ON OFF OFF ON | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF | 0.1
2040
910
1140
1305
1480
1680
2040 | 0.2
1980
795
1050
1220
1405
1610
1980 | 0.3
1920
690
955
1140
1325
1540 | 0.4
1865
580
865
1055
1255
1475 | 0.5
1805
495
775
975
1180
1415
1805 | 0.6
1750
895
1105
1345
1750 | 9 (ESP) 0.7 1700 Si 815 1035 1275 1700 | 0.8
1640
ee Note
ee Note
745
975
1215
1640 | 0.9
1575
4
4
680
895
1150
1575 | 1.0
1525
605
830
1095
1525 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling | SW2-8 OFF OFF OFF ON ON ON | SW2-7 OFF OFF ON ON OFF OFF ON ON | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF | 0.1
2040
910
1140
1305
1480
1680
2040
2280 | 0.2
1980
795
1050
1220
1405
1610
1980
2230 | 0.3
1920
690
955
1140
1325
1540
1920
2175 | 0.4
1865
580
865
1055
1255
1475
1865
2125 | 0.5
1805
495
775
975
1180
1415
1805
2075 | 0.6
1750
895
1105
1345
1750
2025 | 0.7
1700
Si
815
1035
1275
1700 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930 | 0.9
1575
4
4
680
895
1150
1575
1880 | 1.0
1525
605
830
1095
1525
1830 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) | SW2-8 OFF OFF OFF ON ON ON SW2-5 OFF | SW2-7 OFF OFF ON ON OFF OFF ON ON SW2-4 OFF | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF SW2-3 OFF | 0.1
2040
910
1140
1305
1480
2040
2280
2485 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430 | 0.3
1920
690
955
1140
1325
1540
1920
2175 | 0.4
1865
580
865
1055
1255
1475
1865
2125 | 0.5
1805
495
775
975
1180
1415
1805
2075 | 0.6
1750
895
1105
1345
1750
2025
2230 | 0.7
1700
Si
815
1035
1275
1700
1980
2185 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930 | 0.9
1575
4
4
680
895
1150
1575
1880
2090 | 1.0
1525
605
830
1095
1525
1830 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) | SW2-8 OFF OFF OFF ON ON ON ON SW2-5 OFF | SW2-7 OFF OFF ON ON OFF OFF ON ON SW2-4 OFF OFF | SW2-6 OFF ON OFF ON OFF ON OFF ON OFF SW2-3 OFF ON | 0.1
2040
910
1140
1305
1480
2040
2280
2485 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330 | 0.5
1805
495
775
975
1180
1415
1805
2075
2280 | 0.6
1750
895
1105
1345
1750
2025
2230 | 0.7
1700
Si
815
1035
1275
1700
1980
2185 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140 | 0.9
1575
4
4
680
895
1150
1575
1880
2090 | 1.0
1525
605
830
1095
1525
1830 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF | SW2-7 OFF OFF ON ON OFF OFF ON | SW2-6 OFF ON | 0.1
2040
910
1140
1305
1480
2040
2280
2485
910
730
910 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580 | 0.5
1805
495
775
975
1180
1415
1805
2075
2280 | 0.6
1750
895
1105
1345
1750
2025
2230 | 815
1035
1700
1980
2185
Solote 4 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140
ee Note | 0.9
1575
4
4
680
895
1150
1575
1880
2090 | 1.0
1525
605
830
1095
1525
1830 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF | SW2-7 OFF ON ON OFF ON OFF ON ON ON OFF ON ON ON | SW2-6 OFF ON | 0.1
2040
910
1140
1305
1480
2040
2280
2485
910
730
910
1140 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580 | 0.5
1805
495
775
1180
1415
1805
2075
2280
495 | 0.6
1750
895
1105
1345
1750
2025
2230 | 815
1035
1275
1700
1980
2185
Solote 4 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140
ee Note | 0.9
1575
4
4
680
895
1150
1575
1880
2090 | 1.0
1525
605
830
1095
1525
1830
2030 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 0.1
2040
910
1140
1305
1480
2040
2280
2485
910
730
910
1140
1305 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580
865
1055 | 0.5
1805
495
775
975
1180
1415
1805
2075
2280
495
775
975 | 0.6
1750
895
1105
1345
1750
2025
2230
See N | 815
815
1035
1275
1700
1980
2185
Slote 4 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140
ee Note
ee Note | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4 | 1.0
1525
605
830
1095
1525
1830
2030 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON ON | SW2-7 OFF OFF ON ON OFF ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 0.1
2040
910
1140
1305
1480
2040
2280
2485
910
730
910
1140
1305
1480 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140
1325 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580
865
1055
1255 | 0.5
1805
495
775
975
1180
1415
1805
2075
2280
495
775
975
1180 | 0.6
1750
895
1105
1345
1750
2025
2230
See N | 815
1035
1275
1700
1980
2185 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140
ee Note
ee Note
745
975 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
4
4
680
895 | 1.0
1525
605
830
1095
1525
1830
2030 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON ON ON | SW2-7 OFF ON ON OFF ON ON ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 0.1
2040
910
1140
1305
1480
2040
2280
2485
910
730
910
1140
1305
1480
1680 | 0.2
1980
795
1050
1220
1405
1610
2230
2430
795
665
795
1050
1220
1405
1610 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140
1325
1540 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580
865
1055
1255
1475 | 1 Static 0.5 1805 495 775 975 1180 1415 2075 2280 495 775 975 1180 1415 | 0.6
1750
895
1105
1345
1750
2025
2230
See N | 815
1035
1275
815
1035
1275 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140
ee Note
ee Note
745
975
1215 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
680
895
1150 | 1.0
1525
605
830
1095
1525
1830
2030
605
830
1095 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON ON | SW2-7 OFF OFF ON ON OFF ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON |
0.1
2040
910
1140
1305
1480
2040
2280
2485
910
730
910
1140
1305
1480 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140
1325 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580
865
1055
1255 | 0.5
1805
495
775
975
1180
1415
1805
2075
2280
495
775
975
1180 | 0.6
1750
895
1105
1345
1750
2025
2230
See N | 815
1035
1275
1700
1980
2185 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140
ee Note
ee Note
745
975 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
4
4
680
895 | 1.0
1525
605
830
1095
1525
1830
2030 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 0.1
2040
910
1140
1305
1480
2040
2280
2485
910
1140
1305
1480
1680
2040 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405
1610
1980 | 0.3
1920
690
955
1140
1325
1540
1920
690
955
1140
1325
1540
1920 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580
865
1055
1255
1475
1865 | 1 Static 0.5 1805 495 775 975 1180 1415 1805 2280 495 495 775 975 1180 1415 1805 | 0.6
1750
895
1105
1345
1750
2025
2230
See N | 815
1035
1275
1035
1275
1700 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140
ee Note
ee Note
745
975
1215
1640 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
680
895
1150
1575 | 1.0
1525
605
830
1095
1525
1830
2030
605
830
1095 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON ON ON | SW2-7 OFF ON ON OFF ON ON ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 0.1
2040
910
1140
1305
1480
2040
2280
2485
910
730
910
1140
1305
1480
1680 | 0.2
1980
795
1050
1220
1405
1610
2230
2430
795
665
795
1050
1220
1405
1610 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140
1325
1540 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580
865
1055
1255
1475 | 1 Static 0.5 1805 495 775 975 1180 1415 2075 2280 495 775 975 1180 1415 | 895
1105
1345
1750
2025
2230
See N | 815
1035
1275
1035
1275
1700 | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140
ee Note
ee Note
745
975
1215 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
680
895
1150
1575 | 1.0
1525
605
830
1095
1525
1830
2030
605
830
1095 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON ON ON ON OFF | SW2-7 OFF ON ON OFF ON ON ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 0.1
2040
910
1140
1305
1480
2040
2280
2485
910
1140
1305
1480
1680
2040 | 795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405
1610
1980 | 0.3
1920
690
955
1140
1325
1540
1920
690
955
1140
1325
1540
1920 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580
865
1055
1255
1475
1865 | 1 Static 0.5 1805 495 775 975 1180 1415 1805 2280 495 495 775 975 1180 1415 1805 | 895
1105
1345
1750
2025
2230
See N | S (S) (S) (S) (S) (S) (S) (S) (S) (S) (S | 0.8
1640
ee Note
ee Note
745
975
1215
1640
1930
2140
ee Note
ee Note
745
975
1215
1640 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
680
895
1150
1575 | 1.0
1525
605
830
1095
1525
1830
2030
605
830
1095 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON ON ON ON OFF OFF OFF OFF | SW2-7 OFF OFF ON ON OFF ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 910
1140
1305
1480
2040
2280
2485
910
1140
1305
1480
1680
2040
910
730 | 795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405
1610
1980 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140
1325
1540
1920 | 0.4
1865
580
865
1055
1255
1475
1865
2125
2330
580
865
1055
1255
1475
1865 | 1 Static 0.5 1805 495 775 975 1180 1415 1805 2075 2280 495 495 1180 1415 1805 | 895
1105
1345
1750
2025
2230
See N | S S S S S S S S S S S S S S S S S S S | 0.8 1640 ee Note ee Note 745 975 1215 1640 1930 2140 ee Note ee Note 745 975 1215 1640 ee Note | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
680
895
1150
1575
4 | 1.0
1525
605
830
1095
1525
1830
2030
605
830
1095 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON ON ON ON OFF OFF OFF OFF | SW2-7 OFF OFF ON ON OFF ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 910
1140
1305
1480
2040
2280
2485
910
1140
1305
1480
1680
2040
910
730
910 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405
1610
1980
795
665
795 | 0.3
1920
690
955
1140
1325
1540
1920
690
955
1140
1325
1540
1920
690 | 0.4 1865 580 865 1055 1255 1475 1865 2125 2330 580 865 1055 1475 1865 580 865 1055 | 1 Static 0.5 1805 495 775 975 1180 1415 1805 2075 2280 495 495 495 495 495 495 495 | 895
1105
1345
1750
2025
2230
See N | S S S S S S S S S S S S S S S S S S S | 0.8 1640 ee Note ee Note 745 975 1215 1640 1930 2140 ee Note ee Note 745 975 1215 1640 ee Note ee Note | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
680
895
1150
1575
4 | 1.0
1525
605
830
1095
1525
1830
2030
605
830
1095 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF ON ON ON ON Maxim SW2-5 OFF OFF ON ON ON ON ON OFF OFF OFF ON | SW2-7 OFF OFF ON ON OFF ON ON ON ON OFF OFF O | SW2-6 OFF ON | 910
1140
1305
1480
2280
2280
2485
910
1140
1305
1480
1680
2040
910
730
910
1140
1305
1480 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405
1610
1980
795
665
795 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140
1325
1540
1920
690
955
1140
1325 | 0.4 1865 580 865 1055 1255 1475 1865 2125 2330 580 865 1055 1255 1475 1865 580 865 1055 1255 1475 | 1 Static 0.5 1805 495 775 975 1180 1415 1805 2075 2280 495 775 975 1180 1415 1805 495 775 1180 | 895 1105 1345 1750 See N 895 1105 1345 1750 See N | S S S S S S S S S S S S S S S S S S S | 0.8 1640 ee Note ee Note 745 975 1215 1640 1930 2140 ee Note ee Note 745 975 1215 1640 ee Note ee Note ee Note 745 975 1240 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
4
680
895
1150
1575
4
4
4
4
680
895 | 1.0
1525
605
830
1095
1525
1830
2030
605
830
1095
1525 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF ON ON ON ON Maxin SW2-5 OFF OFF ON ON ON ON ON OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 910
1140
1305
1480
2280
2280
2485
910
1140
1305
1480
2040
910
730
910
1140
1305
1480
1480
1480 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405
1610
1980
795
665
795
1050
1220
1405
1405 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140
1325
1540
1920
690
955
1140
1325
1325 | 0.4 1865 580 865 1055 1255 1475 1865 2125 2330 580 865 1055 1255 1475 1865 580 865 1055 1255 1475 | 1 Static 0.5 1805 495 775 975 1180 1415 1805 2075 2280 495 775 975 1180 1415 1805 495 775 975 1180 1180 1180 | 895 1105 1345 1750 See N 895 1105 1345 1750 See N | Since 4 5 Since 6 Since 6 Since 6 Since 7 Since 8 | 0.8 1640 ee Note ee Note 745 975 1215 1640 1930 2140 ee Note ee Note 745 975 1215 1640 ee Note ee Note 745 975 1215 1640 ee Note 975 1215 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
4
680
895
1150
1575
4
4
4
4
680
895 |
1.0
1525
605
830
1095
1525
1830
2030
605
830
1095
1525 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF ON ON ON ON Maxim SW2-5 OFF OFF ON ON ON ON ON OFF OFF OFF ON | SW2-7 OFF OFF ON ON OFF ON ON ON ON OFF OFF O | SW2-6 OFF ON | 910
1140
1305
1480
2040
2280
2485
910
1140
1305
1480
1680
2040
910
730
910
1140
1305
1480 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405
1610
1980
795
665
795 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140
1325
1540
1920
690
955
1140
1325 | 0.4 1865 580 865 1055 1255 1475 1865 2125 2330 580 865 1055 1255 1475 1865 580 865 1055 1255 1475 | 1 Static 0.5 1805 495 775 975 1180 1415 1805 2075 2280 495 775 975 1180 1415 1805 495 775 1180 | 895 1105 1345 1750 See N 895 1105 1345 1750 See N | S S S S S S S S S S S S S S S S S S S | 0.8 1640 ee Note ee Note 745 975 1215 1640 1930 2140 ee Note ee Note 745 975 1215 1640 ee Note ee Note ee Note 745 975 1240 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
4
680
895
1150
1575
4
4
4
4
680
895 | 1.0
1525
605
830
1095
1525
1830
2030
605
830
1095
1525 | | Unit Size: 110V24-22 Clg Switches: Clg Default: Cooling (SW2-8,7,6) CF Switches Low-Clg Default: Low-Cooling (SW2-5,4,3) Cont. Fan Default: | SW2-8 OFF OFF OFF ON ON ON Maxim SW2-5 OFF OFF OFF ON | SW2-7 OFF ON ON OFF ON ON ON ON OFF ON ON OFF OFF | SW2-6 OFF ON | 910
1140
1305
1480
2280
2280
2485
910
1140
1305
1480
2040
910
730
910
1140
1305
1480
1480
1480 | 0.2
1980
795
1050
1220
1405
1610
1980
2230
2430
795
665
795
1050
1220
1405
1610
1980
795
665
795
1050
1220
1405
1405 | 0.3
1920
690
955
1140
1325
1540
1920
2175
2380
690
955
1140
1325
1540
1920
690
955
1140
1325
1325 | 0.4 1865 580 865 1055 1255 1475 1865 2125 2330 580 865 1055 1255 1475 1865 580 865 1055 1255 1475 | 1 Static 0.5 1805 495 775 975 1180 1415 1805 2075 2280 495 775 975 1180 1415 1805 495 775 975 1180 1180 1180 | 895 1105 1345 1750 See N 895 1105 1345 1750 See N | Since 4 5 Since 6 Since 6 Since 6 Since 7 Since 8 | 0.8 1640 ee Note ee Note 745 975 1215 1640 1930 2140 ee Note ee Note 745 975 1215 1640 ee Note ee Note 745 975 1215 1640 ee Note 975 1215 | 0.9
1575
4
4
680
895
1150
1575
1880
2090
4
4
4
680
895
1150
1575
4
4
4
4
680
895 | 1.0
1525
605
830
1095
1525
1830
2030
605
830
1095
1525 | #### **NOTES: Table 4 - Air Delivery** - 1. Nominal 350 CFM/ton cooling airflow is delivered with SW1-5 and SW2-2 set to OFF. - Set both SW1-5 and SW2-2 to ON for +7% airflow (nominal 370 CFM/ton). - Set SW1-5 to ON and SW2-2 to OFF for +15% airflow (nominal 400 CFM/ton). - Set SW2-2 to ON and SW1-5 to OFF for -7% airflow (nominal 325 CFM/ton). - The above adjustments in airflow are subject to motor horsepower range/capacity. - This applies to Cooling and Low-Cooling airflow, but does not affect continuous fan airflow. - 2. Maximum cooling airflow is achieved when switches SW2-6, SW2-7, SW2-8 and SW1-5 are set to ON, and SW2-2 is set to OFF. - 3. All heating CFM's are when comfort/efficiency adjustment switch (SW1-4) is set to OFF - 4. Ductwork must be sized for heating CFM within the operational range of ESP. Operation within the blank areas of the chart is not recommended because heat operation will be above 1.0 ESP. - 5. All airflows on 21" casing size furnaces are 5% less on side return only installations. - 6. Side returns for 24.5" casing sizes require two sides, or side and bottom, to allow sufficient airflow at the return of the furnace. - 7. Airflows over 1800 CFM require bottom return, two-side return, or bottom and side return or excessive watt draw may result. A minimum filter size of 20x25" (508 x 635 mm) is required. #### **Return Air Connections** ### WARNING #### FIRE HAZARD A failure to follow this warning could cause personal injury, death and/or property damage. Never connect return-air ducts to the back of the furnace. Follow instructions below. #### **Downflow Furnaces** The return-air duct must be connected to return-air opening (bottom inlet). DO NOT cut into casing sides (left or right). Side opening is permitted for only upflow and certain horizontal furnaces. Bypass humidifier connections should be made at ductwork or coil casing sides exterior to furnace. (See Fig. 19.) #### **Upflow and Horizontal Furnaces** The return-air duct must be connected to bottom, sides (left or right), or a combination of bottom and side(s) of main furnace casing. Bypass humidifier may be attached into unused return air side of the furnace casing. (See Fig. 18 and 20.) Not all upflow and horizontal furnace models are approved for side return air connections. (See Fig. 18 and 20.) #### **GAS PIPING** ### WARNING #### FIRE OR EXPLOSION HAZARD Failure to follow this warning could result in personal injury, death, and/or property damage. Never purge a gas line into a combustion chamber. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life. ### **A** WARNING #### FIRE OR EXPLOSION HAZARD Failure to follow this warning could result in personal injury, death, and/or property damage. Use proper length of pipe to avoid stress on gas control manifold and a gas leak. ### **A** WARNING #### FIRE OR EXPLOSION HAZARD Failure to follow this warning could result in personal injury, death, and/or property damage. Gas valve inlet and/or inlet pipe must remain capped until gas supply line is permanently installed to protect the valve from moisture and debris. Also, install a sediment trap in the gas supply piping at the inlet to the gas valve. Gas piping must be installed in accordance with national and local codes. Refer to current edition of NFGC in the U.S. Installations must be made in accordance with all authorities having jurisdiction. If possible, the gas supply line should be a separate line running directly from meter to furnace. NOTE: In the state of Massachusetts: - Gas supply connections MUST be performed by a licensed plumber or gas fitter. - When flexible connectors are used, the maximum length shall not exceed 36 in. (915 mm). - 3. When lever handle type manual equipment shutoff valves are used, they shall be T-handle valves. - 4. The use of copper tubing for gas piping is NOT approved by the state of Massachusetts. Refer to Table 5 for recommended gas pipe sizing. Risers must be used to connect to furnace and to meter. Support all gas piping with appropriate straps, hangers, etc. Use a minimum of 1 hanger every 6 ft. (1.8 M). Joint compound (pipe dope) should be applied sparingly and only to male threads of joints. Pipe dope must be resistant to the action of propane gas. Table 5 - Maximum Capacity of Pipe | NOMINAL
IRON PIPE | INTERNAL | | LENGTH | OF PIPE - | - FT (M) | | |----------------------|------------------|-------------|-------------|-------------|--------------|--------------| | SIZE
IN. (MM) | DIA.
IN. (MM) | 10
(3.0) | 20
(6.0) | 30
(9.1) | 40
(12.1) | 50
(15.2) | | 1/2 (12.7) | 0.622(158) | 175 | 120 | 97 | 82 | 73 | | 3/4 (19.0) | 0.824 (20.9) | 360 | 250 | 200 | 170 | 151 | | 1 (25.4) | 1.049 (26.6) | 680 | 465 | 375 | 320 | 285 | | 1-1/4
(31.8) | 1.380 (35.0) | 1400 | 950 | 770 | 660 | 580 | | 1-1/2
(38.1) | 1.610 (40.9) | 2100 | 1460 | 1180 | 990 | 900 | ^{*} Cubic ft of gas per hr for gas pressures of 0.5 psig (14–In. W.C.) or less and a pressure drop of 0.5–In. W.C. (based on a 0.60 specific gravity gas). Ref: Table 6 and 9.2 NFGC. ### **A** WARNING #### FIRE OR EXPLOSION HAZARD A failure to follow this warning could result in personal injury, death, and/or property damage. If local codes allow the use of a flexible gas appliance connector, always use a new listed connector. Do not use a connector which has previously served another gas appliance. Black iron pipe shall be installed at the furnace gas control valve and extend a minimum of 2-in. (51 mm) outside the furnace. ### **A** CAUTION #### FURNACE DAMAGE HAZARD Failure to follow this caution may result in furnace damage. Connect gas pipe to furnace using a backup wrench to avoid damaging gas controls and burner misalignment. An accessible manual equipment shutoff valve MUST be installed external to furnace casing and within 6 ft. (1.8 M) of furnace. A 1/8-in. (3 mm) NPT plugged tapping, accessible for test gauge connection, MUST be installed immediately upstream of gas supply connection to furnace and downstream of manual equipment shutoff valve. **NOTE**: The furnace gas control valve inlet pressure tap connection is suitable to use as test gauge connection providing test pressure DOES NOT exceed maximum 0.5 psig (14-In. W.C.) stated on gas control valve. (See Fig. 42.) Some installations require gas entry on right side of furnace (as viewed in upflow). (See Fig. 21.) Install a sediment trap in riser leading to furnace as shown in Fig. 22. Connect a capped nipple into lower end of tee. Capped nipple should extend below level of furnace gas controls. Place a ground joint union between furnace gas control valve and exterior manual equipment gas shutoff valve. A 1/8-in. (3 mm) NPT plugged tapping, accessible for test gauge connection, MUST be installed immediately upstream of gas supply connection to furnace and
downstream of manual equipment shutoff valve. Piping should be pressure and leak tested in accordance with the current addition of the NFGC in the United States, local, and national plumbing and gas codes before the furnace has been connected. After all connections have been made, purge lines and check for leakage at furnace prior to operating furnace. If pressure exceeds 0.5 psig (14-In. W.C.), gas supply pipe must be disconnected from furnace and capped before and during supply pipe pressure test. If test pressure is equal to or less than 0.5 psig (14-In. W.C.), turn off electric shutoff switch located on furnace gas control valve and accessible manual equipment shutoff valve before and during supply pipe pressure test. After all connections have been made, purge lines and check for leakage at furnace prior to operating furnace. The gas supply pressure shall be within the maximum and minimum inlet supply pressures marked on the rating plate with the furnace burners ON and OFF. TOP VIEW OF BURNER AND MANIFOLD ASSEMBLY Fig. 21 - Burner and Manifold GAS SUPPLY MANUAL SHUTOFF VALVE (REQUIRED) SEDIMENT TRAP A02035 Fig. 22 - Typical Gas Pipe Arrangement #### ELECTRICAL CONNECTIONS ### **A** WARNING ### ELECTRICAL SHOCK, FIRE OR EXPLOSION HAZARD Failure to follow safety warnings could result in dangerous operation, serious injury, death or property damage. Improper servicing could result in dangerous operation, serious injury, death or property damage. - Before servicing, disconnect all electrical power to furnace. - When servicing controls, label all wires prior to disconnection. Reconnect wires correctly. - Verify proper operation after servicing. ### **A** WARNING #### ELECTRICAL SHOCK HAZARD Failure to follow this warning could result in personal injury or death. Blower access panel door switch opens 115-v power to control. No component operation can occur. Do not bypass or close switch with panel removed. See Fig. 25 for field wiring diagram showing typical field 115-v wiring. Check all factory and field electrical connections for tightness. Field-supplied wiring shall conform with the limitations of 63°F (33°C) rise. ### **▲** WARNING #### ELECTRICAL SHOCK AND FIRE HAZARD Failure to follow this warning could result in personal injury, death, or property damage. The cabinet MUST have an uninterrupted or unbroken ground according to NEC NFPA 70 or local codes to minimize personal injury if an electrical fault should occur. This may consist of electrical wire, conduit approved for electrical ground or a listed, grounded power cord (where permitted by local code) when installed in accordance with existing electrical codes. Refer to the power cord manufacturer's ratings for proper wire gauge. Do not use gas piping as an electrical ground. ### **A** CAUTION #### FURNACE MAY NOT OPERATE HAZARD Failure to follow this caution may result in intermittent furnace operation. Furnace control must be grounded for proper operation or else control will lock out. Control must remain grounded through green/yellow wire routed to gas valve and manifold bracket screw. #### Table 6 – Electrical Data | FURNACE SIZE | VOLTS -
HERTZ - | OPERATING
RAN | G VOLTAGE
GE * | UNIT
AMPACITY# | MAX WIRE
LENGTH | MAX. FUSE
OR CKT. BKR | MIN. WIRE
GAUGE | |--------------|--------------------|------------------|-------------------|-------------------|--------------------|--------------------------|--------------------| | | PHASE | Max. | Min. | AWIFACITY# | FT (M)‡ | AMPS † | GAUGE | | 045V1716 | 115-60-1 | 127 | 104 | 10.7 | 34 (10.6) | 15 | 14 | | 070V17-16 | 115-60-1 | 127 | 104 | 14.3 | 25 (7.9) | 15 | 14 | | 070V21-20 | 115-60-1 | 127 | 104 | 17.3 | 33 (10.1) | 20 | 12 | | 090V21-20 | 115-60-1 | 127 | 104 | 14.6 | 25 (7.7) | 15 | 14 | | 090V24-20 | 115-60-1 | 127 | 104 | 14.6 | 25 (7.7) | 15 | 14 | | 110V24-22 | 115-60-1 | 127 | 104 | 18.1 | 31 (9.7) | 20 | 12 | ^{*} Permissible limits of the voltage range at which the unit operates satisfactorily. #### 115-V Wiring Verify that the voltage, frequency, and phase correspond to that specified on unit rating plate. Also, check to be sure that service provided by utility is sufficient to handle load imposed by this equipment. Refer to rating plate or Table 6 for equipment electrical specifications. **U.S. Installations**: Make all electrical connections in accordance with National Electrical Code (NEC) NFPA 70 and any local codes or ordinances that might apply. ### **A** WARNING #### FIRE HAZARD Failure to follow this warning could result in personal injury, death, or property damage. Do not connect aluminum wire between disconnect switch and furnace. Use only copper wire. Use a separate, fused branch electrical circuit with a properly sized fuse or circuit breaker for this furnace. See Table 6 for wire size and fuse specifications. A readily accessible means of electrical disconnect must be located within sight of the furnace. **NOTE**: Proper polarity must be maintained for 115-v wiring. If polarity is incorrect, control LED status indicator light will flash rapidly and furnace will NOT operate. [#] Unit ampacity = 125 percent of largest operating component's full load amps plus 100 percent of all other potential operating components' (EAC, humidifier, etc.) full load amps. [†]Time-delay type is recommended. [‡]Length shown is as measured 1 way along wire path between furnace and service panel for maximum 2 percent voltage drop. #### J-Box Relocation **NOTE**: If factory location of J-Box is acceptable, go to next section (ELECTRICAL CONNECTION to J-Box). **NOTE**: On 14-in. (356 mm) wide casing models, the J-Box shall not be relocated to other side of furnace casing when the vent pipe is routed within the casing. 1. Remove and save two screws holding J-Box. (See Fig. 23.) **NOTE**: The J-Box cover need not be removed from the J-Box in order to move the J-Box. Do NOT remove green ground screw inside J-Box. (See Fig. 23.) - 2. Cut wire tie on loop in furnace wires attached to J-Box. - 3. Move J-Box to desired location. - 4. Fasten J-Box to casing with the two screws removed in Step 1. - Route J-Box wires within furnace away from sharp edges, rotating parts and hot surfaces. #### **Electrical Connection to J-Box** Electrical Box on Furnace Casing Side (See Fig. 24.) ### **A** WARNING #### FIRE OR ELECTRICAL SHOCK HAZARD Failure to follow this warning could result in personal injury, death, or property damage. If field-supplied manual disconnect switch is to be mounted on furnace casing side, select a location where a drill or fastener cannot damage electrical or gas components. A10291 Fig. 23 - Relocating J-Box 1. Select and remove a hole knockout in the casing where the electrical box is to be installed. **NOTE**: Check that duct on side of furnace will not interfere with installed electrical box. - Remove the desired electrical box hole knockout and position the hole in the electrical box over the hole in the furnace casing. - Fasten the electrical box to casing by driving two fieldsupplied screws from inside electrical box into casing steel. - Remove and save two screws holding J-Box. (See Fig. 23.) - Pull furnace power wires out of 1/2-in. (12 mm) diameter hole in J-Box. Do not loosen wires from strain-relief wire-tie on outside of J-Box. - 6. Route furnace power wires through holes in casing and electrical box and into electrical box. - 7. Pull field power wires into electrical box. - 8. Remove cover from furnace J-Box. - Route field ground wire through holes in electrical box and casing, and into furnace J-Box. - Reattach furnace J-Box to furnace casing with screws removed in Step 4. - 11. Secure field ground wire to J-Box green ground screw. - 12. Complete electrical box wiring and installation. Connect line voltage leads as shown in Fig. 24. Use best practices (NEC in U.S. for wire bushings, strain relief, etc. - Reinstall cover to J-Box. Do not pinch wires between cover and bracket. Δ10141 Fig. 24 - Field-Supplied Electrical Box on Furnace Casing #### Power Cord Installation in Furnace J-Box **NOTE**: Power cords must be able to handle the electrical requirements listed in Table 6. Refer to power cord manufacturer's listings. - 1. Remove cover from J-Box. - Route listed power cord through 7/8-in. (22 mm) diameter hole in J-Box. - Secure power cord to J-Box bracket with a strain relief bushing or a connector approved for the type of cord used. - Secure field ground wire to green ground screw on J-Box bracket. - 5. Connect line voltage leads as shown in Fig. 25. - Reinstall cover to J-Box. Do not pinch wires between cover and bracket. #### **BX Cable Installation in Furnace J-Box** - 1. Remove cover from J-Box. - 2. Route BX cable into 7/8-in. (22 mm) diameter hole in J-Box. - 3. Secure BX cable to J-Box bracket with connectors approved for the type of cable used. - 4. Secure field ground wire to green ground screw on J-Box bracket. - 5. Connect line voltage leads as shown in Fig. 25. - 6. Reinstall cover to J-Box. Do not pinch wires between cover and bracket. #### 24-V Wiring Make field 24-v connections at the 24-v terminal strip. (See Fig. 25 - 26.) Connect terminal Y/Y2 as shown in Fig. 27 for proper cooling operation. Use only AWG No. 18, color-coded, copper thermostat wire. The 24-v circuit contains an automotive-type, 3-amp, fuse located on the control. Any direct shorts during installation, service, or maintenance could cause this fuse to blow. If fuse replacement is required, use ONLY a 3-amp. fuse of identical #### **ACCESSORIES** 1. Electronic Air Cleaner (EAC) Connect an accessory Electronic Air Cleaner (if used) using 1/4-in female quick connect terminals to the two male 1/4-in quick-connect terminals on the control board marked EAC-1 and EAC-2. The terminals are rated for 115VAC, 1.0 amps maximum and are energized during blower motor operation. (See Fig. 26.) 2. Humidifier (HUM) Connect an accessory 24 VAC, 0.5 amp. maximum humidifier (if used) to the
1/4-in male quick-connect HUM terminal and COM-24V screw terminal on the control board thermostat strip. The HUM terminal is energized when blower is energized in heating. (See Fig. 26.) NOTE: DO NOT connect furnace control HUM terminal to HUM (humidifier) terminal on Thermidistat, Zone Controller or similar device. See Thermidistat[®], Zone Controller, thermostat, or controller manufacturer's instructions for proper connection. - FIELD 24-V WIRING ---- FIELD 115-, 208/230-, 460-V WIRING ---- FACTORY 24-V WIRING **FACTORY 115-V WIRING** - NOTE 2 **THERMOSTAT** (W)(c) (R) (G) FIVE WIRE FIELD-SUPPLIED **TERMINALS** DISCONNECT THREE-WIRE **HEATING-ONLY** 208/230- OR BLOWER DOOR SWITCH 460-V THRFF PHASE (w)BLK C (R) NTRO 208/230-V GND TH GND SINGLE (G) **PHASE** AUXILIARY 115-V FIELD-(COM) SUPPLIED J-BOX ≟ GND Ι NOTE 1 DISCONNECT CONDENSING UNIT **TWO** 24-V TERMINAL WIRE BLOCK NOTES: 1. Connect Y-terminal in furnace as shown for proper blower operation. **FURNACE** - Some thermostats require a "C" terminal connection as shown. - If any of the original wire, as supplied, must be replaced, use same type or equivalent wire. Representative drawing only, some models may vary. Fig. 25 - Field Wiring Diagram Fig. 26 - Variable Speed ECM Blower Motor A190207 Single-Stage Furnace with Single-Speed Air Conditioner Single-Stage Furnace with Two-Speed Air Conditioner Single-Stage Furnace with Single-Speed Heat Pump Single-Stage Furnace with Two-Speed Heat Pump A12223 Fig. 27 - Thermostat Wiring Diagrams #### NOTES FOR THERMOSTAT WIRING DIAGRAMS - 1. Heat pump MUST have a high pressure switch for HYBRID HEAT® dual fuel applications. - 2. Refer to outdoor equipment Installation Instructions for additional information and setup procedure. - 3. If the heat pump date code is 1501E or earlier, select the "ZONE" position on the two speed heat pump control. Heat pumps with date code 1601E and later do not have or require a "ZONE" selection. - 4. Outdoor Air Temperature Sensor must be attached in all HYBRID HEAT® dual fuel applications. - 5. Configure the thermostat for air conditioner installations. Refer to thermostat instructions. - 6. Configure thermostat for heat pump installations. Refer to thermostat instructions. - 7. Configure thermostat for single-stage compressor operation. Refer to thermostat instructions. - 8. Configure thermostat for HYBRID HEAT® dual fuel operation. Refer to thermostat instructions. - 9. NO connection should be made to the furnace HUM terminal when using a thermostat with a 24 volt humidifier output. - 10. The RVS Sensing terminal "L" should not be connected. This is used internally to sense defrost operation. - 11. If thermostat has internal control of heat pump balance point, DO NOT SELECT the "FURNACE INTERFACE" or "BALANCE POINT" option on the two-speed heat pump control board. Refer to thermostat instructions. - 12. Thermostat signals may vary. Consult thermostat installation instructions for more information. #### VENTING The furnace shall be connected to a listed factory built chimney or vent, or a clay-tile lined masonry or concrete chimney. Venting into an unlined masonry chimney or concrete chimney is prohibited. When an existing Category I furnace is removed or replaced, the original venting system, may no longer be sized to properly vent the attached appliances. An improperly sized Category I venting system could cause the formation of condensate in the furnace and vent, leakage of condensate and combustion products, and spillage of combustion products into the living space. ### **A** WARNING #### CARBON MONOXIDE POISONING HAZARD Failure to follow the steps outlined below for each appliance connected to the venting system being placed into operation could result in carbon monoxide poisoning or death. The following steps shall be followed for each appliance connected to the venting system being placed into operation, while all other appliances connected to the venting system are not in operation: - 1. Seal any unused openings in venting system. - Inspect the venting system for proper size and horizontal pitch, as required in the National Fuel Gas Code, NFPA 54/ANSI Z223.1 and these instructions. Determine that there is no blockage or restriction, leakage, corrosion and other deficiencies, which could cause an unsafe condition. - As far as practical, close all building doors and windows and all doors between the space in which the appliance(s) connected to the venting system are located and other spaces of the building. - 4. Close fireplace dampers. - 5. Turn on clothes dryers and any appliance not connected to the venting system. Turn on any exhaust fans, such as range hoods and bathroom exhausts, so they are operating at maximum speed. Do not operate a summer exhaust fan. - Follow the lighting instructions. Place the appliance being inspected into operation. Adjust the thermostat so appliance is operating continuously. - Test for spillage from draft hood equipped appliances at the draft hood relief opening after 5 minutes of main burner operation. Use the flame of a match or candle. - If improper venting is observed during any of the above tests, the venting system must be corrected in accordance with the National Fuel Gas Code, NFPA 54/ANSI Z223.1. - 9. After it has been determined that each appliance connected to the venting system properly vents when tested as outlined above, return doors, windows, exhaust fans, fireplace dampers and any other gasfired burning appliance to their previous conditions of use. Vent system or vent connectors may need to be resized. Vent systems or vent connectors must be sized to approach minimum size as determined using appropriate table found in the current edition of NFGC. #### **General Venting Requirements** Follow all safety codes for proper vent sizing and installation requirements, including local building codes, the National Fuel Gas Code NFPA 54/ANSI Z223.1 (NFGC), Parts 12 and 13 in the United States, the local building codes, and furnace and vent manufacturers' instructions. These furnaces are design-certified as Category I furnaces in accordance with ANSI Z21.47/CSA 2.3 and operate with a non-positive vent static pressure to minimize the potential for vent gas leakage. Category I furnaces operate with a flue loss not less than 17% to minimize the potential for condensation in the venting system. These furnaces are approved for common venting and multi-story venting with other fan assisted or draft hood equipped appliances in accordance with the NFCG, local building codes, and furnace and vent manufacturers' instructions. The following information and warning must be considered in addition to the requirements defined in the NFGC. ### **▲** WARNING #### CARBON MONOXIDE POISONING HAZARD Failure to follow this warning could result in personal injury or death. Do not bypass the draft safeguard switch, as an unsafe condition could exist which must be corrected. - If a vent (common or dedicated) becomes blocked, the furnace will be shut off by the draft safeguard switch located on the vent elbow. - Do not vent this Category I furnace into a single wall dedicated or common vent. The dedicated or common vent is considered to be the vertical portion of the vent system that terminates outdoors. - Vent connectors serving Category I furnaces shall not be connected into any portion of a mechanical draft system operating under positive pressure. - 4. Do not vent this appliance with any solid fuel burning appliance. - Category I furnaces must be vented vertically or nearly vertically unless equipped with a listed mechanical venter. See SIDEWALL VENTING section. - Do not vent this appliance into an unlined masonry chimney. Refer to Chimney Inspection Chart, Fig. 28. #### **CHIMNEY INSPECTION CHART** For additional requirements refer to the National Fuel Gas Code NFPA 54/ANSI Z223.1 and ANSI/NFPA 211 Chimneys, Fireplaces, Vents, and Solid Fuel Burning Appliances Fig. 28 - Chimney Inspection Chart #### **Masonry Chimney Requirement** **NOTE**: These furnaces are CSA design-certified for use in exterior tile-lined masonry chimneys with a factory accessory Chimney Adapter Kit. Refer to the furnace rating plate for correct kit usage. The Chimney Adapter Kits are for use with ONLY furnaces having a Chimney Adapter Kit number marked on the furnace rating plate. If a clay tile-lined masonry chimney is being used and it is exposed to the outdoors below the roof line, relining might be required. Chimneys shall conform to the Standard for Chimneys, Fireplaces, Vents, and Solid Fuel Burning Appliances ANSI/NFPA 211 in the United States and must be in good condition. **U.S.A.**-Refer to Sections 13.1.8 and 13.2.20 of the NFPA 54/ANSI Z223.1 or the authority having jurisdiction to determine whether relining is required. If relining is required, use a properly sized listed metal liner, Type-B vent, or a listed alternative venting design. **NOTE**: See the NFPA 54/ANSI Z223.1 13.1.9 and 13.2.20 regarding alternative venting design and the exception, which cover installations such as our Chimney Adapter Kits which are listed for use with these furnaces. See Product Data for accessory listing. The Chimney Adapter Kit is a listed alternative venting system for these furnaces. See the kit instructions for complete details. This furnace is permitted to be vented into a clay tile-lined masonry chimney that is exposed to the outdoors below the roof line, provided: - 1. Vent connector is Type-B double-wall, and - 2. This furnace is common vented with at least 1 draft hood equipped appliance, and - 3. The combined appliance input rating is less than the maximum capacity given in Table 7, and - 4. The input rating of each space heating appliance is greater than the minimum input rating given in Table 8 for the local 99% Winter Design Temperature. Chimneys having internal areas greater than 38 sq. in. (24516 sq. mm) require furnace input ratings greater than the input ratings of these
furnaces. See footnote at bottom of Table 8, and - 5. The authority having jurisdiction approves. If all of these conditions cannot be met, an alternative venting design shall be used, such as the listed chimney adapter kit with a furnace listed for use with the kit, a listed chimney-lining system, or a Type-B common vent. Inspections before the sale and at the time of installation will determine the acceptability of the chimney or the need for repair and/or (re)lining. Refer to the Fig. 28 to perform a chimney inspection. If the inspection of a previously used tile-lined chimney: - a. Shows signs of vent gas condensation, the chimney should be relined in accordance with local codes and the authority having jurisdiction. The chimney should be relined with a listed metal liner, Type-B vent, or a listed chimney adapter kit shall be used to reduce condensation. If a condensate drain is required by local code, refer to the NFPA 54/ANSI Z223.1, Section 12.10 for additional information on condensate drains. - b. Indicates the chimney exceeds the maximum permissible size in the tables, the chimney should be rebuilt or relined to conform to the requirements of the equipment being installed and the authority having jurisdiction. A chimney without a clay tile liner, which is otherwise in good condition, shall be rebuilt to conform to ANSI/NFPA 211 or be lined with a UL listed metal liner or UL listed Type-B vent. Relining with a listed metal liner or Type-B vent is considered to be a vent-in-a-chase. If a metal liner or Type-B vent is used to line a chimney, no other appliance shall be vented into the annular space between the chimney and the metal liner. #### Exterior Masonry Chimney FAN + NAT Installations with Type-B Double-Wall Vent Connectors ©NFPA & AGA Table 7 – Combined Appliance Maximum Input Rating in Thousands of Btuh per Hour | VENT HEIGHT
FT (M) | INTERNAL AREA OF CHIMNEY
SQ. IN. (SQ. MM) | | | | |-----------------------|--|---------------|---------------|---------------| | | 12
(7741) | 19
(12258) | 28
(18064) | 38
(24516) | | 6 (1.8) | 74 | 119 | 178 | 257 | | 8 (2.4) | 80 | 130 | 193 | 279 | | 10 (3.0) | 84 | 138 | 207 | 299 | | 15 (4.5) | NR | 152 | 233 | 334 | | 20 (6.0) | NR | NR | 250 | 368 | | 30 (9.1) | NR | NR | NR | 404 | #### Appliance Application Requirements Appliance operation has a significant impact on the performance of the venting system. If the appliances are sized, installed, adjusted, and operated properly, the venting system and/or the appliances should not suffer from condensation and corrosion. The venting system and all appliances shall be installed in accordance with applicable listings, standards, and codes. The furnace should be sized to provide 100 percent of the design heating load requirement plus any margin that occurs because of furnace model size capacity increments. Heating load estimates can be made using approved methods available from Air Conditioning Contractors of America (Manual J); American Society of Heating, Refrigerating, and Air-Conditioning Engineers; or other approved engineering methods. Excessive oversizing of the furnace could cause the furnace and/or vent to fail prematurely. When a metal vent or metal liner is used, the vent must be in good condition and be installed in accordance with the vent manufacturer's instructions. To prevent condensation in the furnace and vent system, the following precautions must be observed: - The return-air temperature must be at least 60°F db except for brief periods of time during warm-up from setback at no lower than 55°F (13°C) db or during initial start-up from a standby condition. - Adjust the gas input rate per the installation instructions. Low gas input rate causes low vent gas temperatures, causing condensation and corrosion in the furnace and/or venting system. Derating is permitted only for altitudes above 2000 Ft. (610 M). - Adjust the air temperature rise to the midpoint of the rise range or slightly above. Low air temperature rise can cause low vent gas temperature and potential for condensation problems. - Set the thermostat heat anticipator or cycle rate to reduce short cycling. ### **A** CAUTION #### **BURN HAZARD** Failure to follow this caution may result in personal injury. Hot vent pipe is within reach of small children when installed in downflow position. See the following instruction. Table 8 – Minimum Allowable Input Rating of Space-Heating Appliance in Thousands of Btuh per Hour | | INTERNAL AREA OF CHIMNEY | | | INEY | |---|--------------------------|---------------|--------------|---------------| | VENT HEIGHT | SQ. IN. (SQ. MM) | | | | | FT. (M) | 12
(7741) | 19
(12258) | 28
18064) | 38
(24516) | | Local 99% Winter | Design Ten | nperature: 1 | 7 to 26 de | grees F | | 6 | 0 | 55 | 99 | 141 | | 8 | 52 | 74 | 111 | 154 | | 10 | NR | 90 | 125 | 169 | | 15 | NR | NR | 167 | 212 | | 20 | NR | NR | 212 | 258 | | 30 | NR | NR | NR | 362 | | Local 99% Winter Design Temperature: 5 to 16 degrees F* | | | | | | 6 | NR | 78 | 121 | 166 | | 8 | NR | 94 | 135 | 182 | | 10 | NR | 111 | 149 | 198 | | 15 | NR | NR | 193 | 247 | | 20 | NR | NR | NR | 293 | | 30 | NR | NR | NR | 377 | | Local 99% Winter Design Temperature: -10 to 4 degrees F* | | | | | | 6 | NR | NR | 145 | 196 | | 8 | NR | NR | 159 | 213 | | 10 | NR | NR | 175 | 231 | | 15 | NR | NR | NR | 283 | | 20 | NR | NR | NR | 333 | | 30 | NR | NR | NR | NR | | Local 99% Winter Design Temperature: -11 degrees F or lower | | | | | | Not recommended for any vent configuration. | | | | | ^{*}The 99.6% heating (db) temperatures found in the 1997 or 2001 ASHRAE Fundamentals Handbook, Climatic Design Information chapter, Table 1A (United States) and 2A (Canada) or the 2005 ASHRAE Fundamentals handbook, Climatic Design Information chapter, and the CD-ROM included with the 2005 ASHRAE Fundamentals Handbook. Air for combustion must not be contaminated by halogen compounds which include chlorides, fluorides, bromides, and iodides. These compounds are found in many common home products such as detergent, paint, glue, aerosol spray, bleach, cleaning solvent, salt, and air freshener, and can cause corrosion of furnaces and vents. Avoid using such products in the combustion-air supply. Furnace use during construction of the building could cause the furnace to be exposed to halogen compounds, causing premature failure of the furnace or venting system due to corrosion. Vent dampers on any appliance connected to the common vent can cause condensation and corrosion in the venting system. Do not use vent dampers on appliances common vented with this furnace. #### **Additional Venting Requirements** A 4-in. (102 mm) round vent elbow is supplied with the furnace. A 5-in. (127 mm) or 6- in. (152 mm) vent connector may be required for some model furnaces. A field-supplied 4-in. (102 mm) to 5-in. (127 mm) or 4-in. (102 mm) to 6-in. (152 mm) sheet metal increaser fitting is required when 5-in. (127 mm) or 6-in. (152 mm) vent connector is used. See Fig. 29 - 41, Venting Orientation for approved vent configurations. **NOTE**: Vent connector length for connector sizing starts at furnace vent elbow. The 4-in. (102 mm) vent elbow is shipped for upflow configuration and may be rotated for other positions. Remove the three screws that secure vent elbow to furnace, rotate furnace vent elbow to position desired, reinstall screws. The factory-supplied vent elbow does NOT count as part of the number of vent connector elbows. The vent connector can exit the furnace through one of five locations on the casing. ### **A** CAUTION #### **CUT HAZARD** Failure to follow this caution may result in personal injury. Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts, and servicing furnaces. Attach the single wall vent connector to the furnace vent elbow, and fasten the vent connector to the vent elbow with at least two field-supplied, corrosion-resistant, sheet metal screws located 180° apart. NOTE: An accessory flue extension is available to extend from the furnace elbow to outside the furnace casing. See Product Data for accessory listing. If flue extension is used, fasten the flue extension to the vent elbow with at least two field-supplied, corrosion-resistant, sheet metal screws located 180° apart. Fasten the vent connector to the flue extension with at least two field-supplied, corrosion resistant sheet metal screws located 180° apart. - 2. Vent the furnace with the appropriate connector as shown in Fig. 29 41. - 3. Determine the correct location of the knockout to be removed - Use a hammer and screwdriver to strike a sharp blow between the tie points and work the slug back and forth until the slug breaks free. An accessory Vent Guard Kit is REQUIRED for downflow applications for use where the vent exits through the lower portion of the furnace casing. Refer to the Vent Guard Kit Instructions for complete details. See Product Data for accessory listing. SEE NOTES: 1,2,4,7,8,9 on the page following these figures Fig. 29 - Upflow Application - Vent Elbow Up SEE NOTES: 1,2,3,4,7,8,9 on the pages following these figures A03209 Fig. 30 - Upflow Application - Vent Elbow Right SEE NOTES:1,2,3,4,5,7,8,9 on the page following these figures Fig. 31 - Downflow Application - Vent Elbow Up then Left SEE NOTES: 1,2,4,5,7,8,9 on the page following these figures A03211 Fig. 32 - Downflow Application - Vent Elbow Up SEE NOTES: 1,2,4,5,6,7,8,9,10 on the page following these figures A03207 Fig. 33 - Downflow Application - Vent Elbow Left then Up SEE NOTES:1,2,3,4,5,7,8,9 on the page following these figures. A03212 Fig. 34 - Downflow Application - Vent Elbow Up then Right SEE NOTES: 1,2,4,7,8,9 on the page following these figures A0321 Fig. 35 - Horizontal Left Application - Vent Elbow
Left SEE NOTES: 1,2,4,5,7,8,9 on the page following these figures A0321 Fig. 36 - Horizontal Left Application - Vent Elbow Right then Up SEE NOTES: 1,2,4,7,8,9 on the page following these figures A03218 Fig. 37 - Horizontal Right Application - Vent Elbow Right SEE NOTES: 1,2,4,5,7,8,9 on the page following these figures A03215 Fig. 38 - Horizontal Left Application - Vent Elbow Up SEE NOTES: 1,2,4,5,7,8,9 on the page following these figures Fig. 39 - Horizontal Left Application - Vent Elbow Right SEE NOTES: 1,2,4,5,7,8,9 on the page following these figures SEE NOTES: 1,2,4,5,7,8,9 A02068 Fig. 41 - Horizontal Right Application-Vent Elbow Left Fig. 40 - Horizontal Right Application - Vent Elbow Left then Up #### **VENTING NOTES FOR FIG. 29 - 41** A03219 - 1. For common vent, vent connector sizing and vent material: United States--use the NFGC. - 2. Immediately increase to 5-in. (102 mm) or 6-in. (152 mm) vent connector outside furnace casing when 5-in. (127 mm) vent connector is required, refer to Note 1 above. - 3. Side outlet vent for upflow and downflow installations must use Type B vent immediately after exiting the furnace, except when factory-approved Downflow Vent Guard Kit is used in the downflow position. See Product Data for accessory listing. - 4. Type-B vent where required, refer to Note 1 above. - 5. A 4-in.(102 mm) single-wall (26 ga. min.) vent must be used inside furnace casing and when the factory-approved Downflow Vent Guard Kit is used external to the furnace. See Product Data for accessory listing. - 6. Accessory Downflow Vent Guard Kit required in downflow installations with lower vent configuration. See Product Data for accessory listing. - 7. Chimney Adapter Kit may be required for exterior masonry chimney applications. Refer to Chimney Adapter Kit for sizing and complete application details. See Product Data for accessory listing. - 8. Secure vent connector to furnace elbow with (2) corrosion-resistant sheet metal screws, spaced approximately 180° apart. - 9. Secure all other single wall vent connector joints with (3) corrosion resistant screws spaced approximately 120° apart. Secure Type-B vent connectors per vent connector manufacturer's recommendations. Caution!! For the following applications, use the minimum vertical heights as specified below. For all other applications, follow exclusively the National Fuel Gas Code. | FURNACE
ORIENTATION | VENT ORIENTATION | FURNACE INPUT
(BTUH/HR) | MIN. VENT
DIAMETER
IN. (mm)* | MIN. VERTICAL VENT
HEIGHT
FT. (M)** | |------------------------|--------------------------------------|----------------------------|------------------------------------|---| | Downflow | Vent elbow up then left
Fig. 31 | 110,000 | 5 (127) | 10 (3.0) | | Downflow | Vent elbow left, then up
Fig. 33 | 110,000 | 5 (127) | 12 (3.6) | | Downflow | Vent elbow up, then right
Fig. 34 | 110,000 | 5 (127) | 10 (3.0) | NOTE: All vent configurations must also meet National Fuel Gas Code venting requirements NFGC. The horizontal portion of the venting system shall slope upwards not less than 1/4-in. per linear ft. (21 mm/m) from the furnace to the vent and shall be rigidly supported every 5 ft. (1.5 M) or less with metal hangers or straps to ensure there is no movement after installation. #### **Sidewall Venting** This furnace is not approved for direct sidewall horizontal venting. Per section 12.4.3 of the NFPA 54/ANSI Z223.1, any listed mechanical venter may be used, when approved by the authority having jurisdiction. Select the listed mechanical venter to match the Btuh input of the furnace being vented. Follow all manufacturer's installation requirements for venting and termination included with the listed mechanical venter. ^{*4-}in. (102 mm) inside casing or vent guard ^{**}Including 4 in. (102 mm) vent section(s) # START-UP, ADJUSTMENT, AND SAFETY CHECK #### General ### **WARNING** #### FIRE HAZARD Failure to follow this warning could result in personal injury, death or property damage. This furnace is equipped with manual reset limit switches in the gas control area. The switches open and shut off power to the gas valve, if a flame rollout or overheating condition occurs in the gas control area. DO NOT bypass the switches. Correct problem before resetting the switches. - 1. Maintain 115-v wiring and ground. Improper polarity will result in rapid flashing LED and no furnace operation. - 2. Make thermostat wire connections at the 24-v terminal block on the furnace control. Failure to make proper connections will result in improper operation. (See Fig. 25 26.) - 3. Gas supply pressure to the furnace must be greater than 4.5-In. W.C. (0.16 psig) but not exceed 14-In. W.C. (0.5 psig). - 4. Check all manual-reset switches for continuity. - 5. Replace blower compartment door. Door must be in place to operate furnace. - Setup switch descriptions. The variable speed furnace control has DIP switches to select thermostat staging, blower off delay timings, air flow selection and other operational or service related functions. (See Fig. 26, 48 and Table 46.) ### **A** CAUTION #### **CUT HAZARD** Failure to follow this caution may result in personal injury. Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts, and servicing furnaces. A06666 Fig. 42 - Redundant Automatic Gas Control Valve Fig. 43 - Orifice Hole A93059 EXAMPLE: $\frac{5.0 \text{ AMPS ON AMMETER}}{10 \text{ TURNS AROUND JAWS}} = \frac{0.5 \text{ AMPS FOR THERMOSTAT}}{\text{ANTICIPATOR SETTING}}$ A96316 Fig. 44 - Amp. Draw Check with Ammeter #### Start-Up Procedures ### **A** WARNING #### FIRE OR EXPLOSION HAZARD Failure to follow this warning could result in personal injury, death, and/or property damage. Never purge a gas line into a combustion chamber. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life. ### **A** WARNING #### ELECTRICAL SHOCK HAZARD Failure to follow this warning could result in personal injury, or death. Blower access door switch opens 115-v power to control. No component operation can occur unless switch is closed. Caution must be taken when manually closing this switch for service purposes. - 1. Purge gas lines after all connections have been made. - 2. Check gas lines for leaks. - 3. To Begin Component Self-Test: Remove Blower Access Door. Disconnect the thermostat R lead from furnace control board. Manually close blower door switch. Turn Setup DIP switch SW1-6 ON. (See Fig. 26, 48 and Table 46.) **NOTE**: The furnace control allows all components, except the gas valve, to be run for short period of time. This feature helps diagnose a system problem in case of a component failure. Component test feature will not operate if any thermostat signal is present at the control. Refer to service label attached to furnace or See Fig. 45. Component test sequence is as follows: - a. Inducer motor starts and continues to run until Step d. of component test sequence. - b. Hot surface igniter is energized for 15 sec., then off. - c. Blower motor operates for 15 sec. - d. After component test is completed, status code 11 will flash. See component test section of service label (Fig. 45) in furnace for explanation of status codes. ${f NOTE}$: To repeat component test, turn setup switch SW1-6 OFF, then back ON. - Turn setup DIP switch SW1-6 OFF. Reconnect R lead to furnace control board, release blower door switch and reinstall blower access door. - 5. Operate furnace per instruction on inner door. - 6. Verify furnace shut down by lowering thermostat setting below room temperature. - Verify furnace restarts by raising thermostat setting above room temperature. Fig. 45 - Service Label Fig. 46 - Furnace Setup Switch Description A190272 A190273 Fig. 47 - Airflow Selection (based on 350 CFM/TON) for A/C (SW2-6, 7, 8) and *CF (SW2-3, 4, 5) #### Adjustments ### **A** WARNING #### FIRE HAZARD Failure to follow this warning could result in personal injury, death and/or property damage. DO NOT bottom out gas valve regulator adjusting screw. This can result in unregulated manifold pressure and result in excess overfire and heat exchanger failures. Furnace gas input rate on rating plate is for installations at altitudes up to 2000 Ft. (610 M). Furnace input rate must be within +/-2 percent of furnace rating plate input. 1. Determine the correct gas input rate. The input rating for altitudes above 2,000 ft. (610 M) must be reduced by 4 percent for each 1,000 ft. (305 M) above sea level. For installations below 2000 Ft. (610 M), refer to the unit rating plate. For installations above 2000 Ft. (610 M), multiply the input on the rating plate by the de-rate multiplier in Table 9 for the correct input rate. ### **A** CAUTION #### FURNACE DAMAGE HAZARD Failure to follow this caution may result in reduced furnace life. DO NOT redrill orifices. Improper drilling (burrs, out-of-round holes, etc.) can cause excessive burner noise and misdirection of burner flames. This can result in flame impingement of heat exchangers, causing failures. (See Fig. 43.) 2. Determine the correct orifice and manifold pressure adjustment. All models in all positions use Table 11 (22,000 Btuh per burner.) See input listed on rating plate. - a. Obtain average yearly gas heat value (at installed altitude) from local gas supplier. - Obtain average yearly gas specific gravity from local gas supplier. - c. Find installation altitude in Table 11. - d. Find closest natural gas heat value and specific gravity in Table 11. - Follow heat value and specific gravity lines to point of intersection to find orifice size and manifold pressure settings for proper operation. - f. Check and verify burner orifice size in furnace.
NEV-ER ASSUME ORIFICE SIZE. ALWAYS CHECK AND VERIFY. **NOTE**: If orifice hole appears damaged or it is suspected to have been redrilled, check orifice hole with a numbered drill bit of correct size. Never redrill an orifice. A burr-free and squarely aligned orifice hole is essential for proper flame characteristics. g. Replace orifice with correct size, if required by Table 11. Use only factory-supplied orifices. See EXAM-PLE 1. Table 9 - Altitude Derate Multiplier for U.S.A. | ALTITUDE
FT. (M) | PERCENT
OF DERATE | DERATE MULTIPLIER
FACTOR* | |----------------------------|----------------------|------------------------------| | 0–2000
(0–610) | 0 | 1.00 | | 2001–3000
(610–914) | 8–12 | 0.90 | | 3001–4000
(914–1219) | 12–16 | 0.86 | | 4001–5000
(1219–1524) | 16–20 | 0.82 | | 5001–6000
1524–1829) | 20–24 | 0.78 | | 6001–7000
(1829–2134) | 24–28 | 0.74 | | 7001–8000
(2134–2438) | 28–32 | 0.70 | | 8001-9000
(2438-2743) | 32–36 | 0.66 | | 9001–10,000
(2743–3048) | 36–40 | 0.62 | #### EXAMPLE 1: 0-2000 ft. (0-610 M) altitude For 22,000 Btuh per burner application use Table 11. Heating value = 1000 Btuh/cu ft. Specific gravity = 0.62 Therefore: Orifice No. 43* Manifold pressure: 3.7-In. W.C. * Furnace is shipped with No. 43 orifices. In this example all main burner orifices are the correct size and do not need to be changed to obtain proper input rate. - 3. Adjust manifold pressure to obtain correct input rate. (See Fig. 42.) - a. Turn gas valve ON/OFF switch to OFF. - b. Remove manifold pressure tap plug from gas valve. - Connect a water column manometer or similar device to manifold pressure tap. - d. Turn gas valve ON/OFF switch to ON. - e. Manually close blower door switch. - f. Jumper R and W thermostat connections on control to start furnace. (See Fig. 26.) - g. Remove regulator seal cap and turn regulator adjusting screw counterclockwise (out) to decrease input rate of clockwise (in) to increase input rate. - h. Install regulator seal cap. - Leave manometer or similar device connected and proceed to Step 4. **NOTE**: DO NOT set manifold pressure less than 3.2-In. W.C. or more than 3.8-In. W.C. for natural gas at sea level. If manifold pressure is outside this range, change main burner orifices. **NOTE**: If orifice hole appears damaged or it is suspected to have been redrilled, check orifice hole with a numbered drill bit of correct size. Never redrill an orifice. A burr-free and squarely aligned orifice hole is essential for proper flame characteristics. 4. Verify natural gas input rate by clocking meter. **NOTE**: Gas valve regulator adjustment cap must be in place for proper input to be clocked. - a. Turn off all other gas appliances and pilots served by the - b. Run furnace for 3 minutes in heating operation. - c. Measure time (in sec) for gas meter to complete 1 revolution and note reading. The 2 or 5 cubic feet dial provides a more accurate measurement of gas flow. - d. Refer to Table 12 for cubic ft. of gas per hr. - e. Multiply gas rate (cu ft./hr) by heating value (Btuh/cu ft.) to obtain input. If clocked rate does not match required input from Step 1, increase manifold pressure to increase input or decrease manifold pressure to decrease input. Repeat steps b through e until correct input is achieved. Reinstall regulator seal cap on gas valve. 5. Set temperature rise. The furnace must operate within the temperature rise ranges specified on the furnace rating plate. Do not exceed temperature rise range specified on unit rating plate. Determine the temperature rise as follows: NOTE: Blower access door must be installed when taking temperature rise reading. Leaving blower access door off will result in incorrect temperature measurements. When setup switch SW1-4 is ON, operation will be near the high end of the rise range for improved comfort. Furnace must operate within ranges of temperature rise specified on the furnace rating plate. Determine air temperature rise as follows: ### **A** WARNING #### ELECTRICAL SHOCK HAZARD Failure to follow this warning could result in personal injury or death. Disconnect 115-v electrical power and install lockout tag before changing speed tap. - a. Place thermometers in return and supply ducts as close to furnace as possible. Be sure thermometers do not see radiant heat from heat exchangers. Radiant heat affects temperature rise readings. This practice is particularly important with straight-run ducts. - When thermometer readings stabilize, subtract return-air temperature from supply-air temperature to determine air temperature rise. **NOTE**: If the temperature rise is outside this range, first check: - (1.) Gas input for heating operation. - (2.) Derate for altitude if applicable. - (3.) Return and supply ducts for excessive restrictions causing static pressures greater than 0.50-In. W.C. - (4.) Ensure Comfort/Efficiency SW 1-4 on furnace control is in OFF=Efficiency position when a bypass humidifier is used. (See Fig. 26 for switch location) - (5.) Make sure proper model plug is installed. - Turn thermostat down below room temperature and remove blower access door. - d. To increase heating airflow, set Comfort/Efficiency SW1-4 of furnace control to OFF=Efficiency position. - e. Careful not to put tension on any wire connections - f. Repeat steps a through e. - g. When correct input rate and temperature rise is achieved, turn gas valve ON/OFF switch to OFF. - h. Remove manometer or similar device from gas valve. - i. Reinstall manifold pressure tap plug in gas valve. - j. Turn gas valve ON/OFF switch to ON. # **A** WARNING ### FIRE HAZARD Failure to follow this warning could result in personal injury, death, and/or property damage. Reinstall manifold pressure tap plug in gas valve to prevent gas leak. # **A** CAUTION #### FURNACE OVERHEATING HAZARD Failure to follow this caution may result in reduced furnace life. Recheck temperature rise. It must be within limits specified on the rating plate. Recommended operation is at the mid-point of rise range or slightly above. - 6. Set thermostat heat anticipator. - a. Mechanical thermostat Set thermostat heat anticipator to match the amp. draw of the electrical components in the R-W circuit. Accurate amp. draw readings can be obtained at the wires normally connected to thermostat subbase terminals, R and W. The thermostat anticipator should NOT be in the circuit while measuring current. - (1.) Remove thermostat from subbase or from wall. - (2.) Connect an amp. meter as shown in Fig. 44 across the R and W subbase terminals or R and W wires at wall - (3.) Record amp. draw across terminals when furnace is in heating and after blower starts. - (4.) Set heat anticipator on thermostat per thermostat instructions and install on subbase or wall. - b. Electronic thermostat: Set cycle rate for 4 cycles per hr. Adjust blower off delay The blower off delay has 4 adjustable settings from 90 sec to 180 sec. The blower off delay jumpers are located on the furnace control board. (See Fig. 26.) To change the blower off delay setting, move the jumper from one set of pins on the control to the pins used for the selected blower off delay. Factory off delay setting is 120 sec. Set airflow CFM for cooling Select the desired blower motor speed lead for cooling airflow. See Table 4-Air Delivery-CFM (With Filter) for Table 10 - Gas Rate (CU ft./hr) lead color identification. | | SIZE | OF TES | T DIAL | | SIZE OF TEST DI-
AL | | | | |-------------------------------------|----------------|----------------|-------------|-------------------------------------|------------------------|----------------|----------------|--| | SECONDS
FOR 1
REVOLU-
TION | 1
Cu
Ft. | 2
Cu
Ft. | 5 Cu
Ft. | SECONDS
FOR 1
REVOLU-
TION | 1
C
u
Ft. | 2
Cu
Ft. | 5
Cu
Ft. | | | 10 | 360 | 720 | 1800 | 50 | 72 | 144 | 360 | | | 11 | 327 | 655 | 1636 | 51 | 71 | 141 | 355 | | | 12 | 300 | 600 | 1500 | 52 | 69 | 138 | 346 | | | 13 | 277 | 555 | 1385 | 53 | 68 | 136 | 340 | | | 14 | 257 | 514 | 1286 | 54 | 67 | 133 | 333 | | | 15 | 240 | 480 | 1200 | 55 | 65 | 131 | 327 | | | 16 | 225 | 450 | 1125 | 56 | 64 | 129 | 321 | | | 17 | 212 | 424 | 1059 | 57 | 63 | 126 | 316 | | | 18 | 200 | 400 | 1000 | 58 | 62 | 124 | 310 | | | 19 | 189 | 379 | 947 | 59 | 61 | 122 | 305 | | | 20 | 180 | 360 | 900 | 60 | 60 | 120 | 300 | | | 21 | 171 | 343 | 857 | 62 | 58 | 116 | 290 | | | 22 | 164 | 327 | 818 | 64 | 56 | 112 | 281 | | | 23 | 157 | 313 | 783 | 66 | 54 | 109 | 273 | | | 24 | 150 | 300 | 750 | 68 | 53 | 106 | 265 | | | 25 | 144 | 288 | 720 | 70 | 51 | 103 | 257 | | | 26 | 138 | 277 | 692 | 72 | 50 | 100 | 250 | | | 27 | 133 | 267 | 667 | 74 | 48 | 97 | 243 | | | 28 | 129 | 257 | 643 | 76 | 47 | 95 | 237 | | | 29 | 124 | 248 | 621 | 78 | 46 | 92 | 231 | | | 30 | 120 | 240 | 600 | 80 | 45 | 90 | 225 | | | 31 | 116 | 232 | 581 | 82 | 44 | 88 | 220 | | | 32 | 113 | 225 | 563 | 84 | 43 | 86 | 214 | | | 33 | 109 | 218 | 545 | 86 | 42 | 84 | 209 | | | 34 | 106 | 212 | 529 | 88 | 41 | 82 | 205 | | | 35 | 103 | 206 | 514 | 90 | 40 | 80 | 200 | | | 36 | 100 | 200 | 500 | 92 | 39 | 78 | 196 | | | 37 | 97 | 195 | 486 | 94 | 38 | 76 | 192 | | | 38 | 95 | 189 | 474 | 96 | 38 | 75 | 188 | | | 39 | 92 | 185 | 462 | 98 | 37 | 74 | 184 | | | 40 | 90 | 180 | 450 | 100 | 36 | 72 | 180 | | | 41 | 88 | 176 | 439 | 102 | 35 | 71 | 178 | | | 42 | 86 | 172 | 429 | 104 | 35 | 69 | 173 | | | 43 | 84 | 167 | 419 | 106 | 34 | 68 | 170 | | | 44 | 82 | 164 | 409 | 108 | 33 | 67 | 167 | | | 45 | 80 | 160 | 400 | 110 | 33 | 65 | 164 | | | 46 | 78 | 157 | 391 | 112 | 32 | 64 | 161 | | | 47 | 76 | 153 | 383 | 116 | 31 | 62 | 155 | | | 48 | 75 | 150 | 375 | 120 | 30 | 60 | 150 | | | 49 | 73 | 147 | 367 | | | | | | Table 11 – Orifice Size and Manifold Pressure (In. W.C.) for Gas Input Rate (TABULATED DATA BASED ON 22,000 BTUH PER BURNER, DERATED 4%/1000 FT (305M) ABOVE SEA LEVEL) | | ALTITUDE | ITUDE AVG. GAS SPECIFIC GRAVITY OF
NATURAL GAS | | | | | | | | | |--------|------------|--|----------|------------|----------|------------|----------|------------------------|----------|------------| | | RANGE | HEAT VALUE | | 0.58 | | 0.60 | |).62 | 0.64 | | | | | AT ALTITUDE | Orifice | Manifold | Orifice | Manifold | Orifice | Manifold | Orifice | Manifold | | | ft (m) | (Btu/cu ft) | No. | Pressure | No. | Pressure | No. | Pressure | No. | Pressure | | | | 900 | 42 | 3.5 | 42 | 3.6 | 42 | 3.7 | 41 | 3.5 | | | 0 | 925 | 42 | 3.3 | 42 | 3.4 | 42 | 3.5 | 42 | 3.7 | | | (0) | 950 | 43 | 3.8 | 42 | 3.3 | 42 | 3.4 | 42 | 3.5 | | ن ا | | 975 | 43 | 3.6 | 43 | 3.8 | 42 | 3.2 | 42 | 3.3 | | l S | Y.S. to | 1000 | 43 | 3.5 | 43 | 3.6 | 43 | 3.7 | 43 | 3.8 | | = | | 1025 | 43 | 3.3 | 43 | 3.4 | 43 | 3.5 | 43 | 3.6 | | | 2000 | 1050 | 44 | 3.6 | 43 | 3.2 | 43 | 3.4 | 43 | 3.5 | | | (610) | 1075 | 44 | 3.4 | 44 | 3.5 | 43 | 3.2 | 43 | 3.3 | | | | 1100 | 44 | 3.3 | 44 | 3.4 | 44 | 3.5 | 43 | 3.2 | | | | 800 | 42 | 3.4 | 42 | 3.5 | 42 | 3.6 | 42 | 3.7 | | | | 825 | 42 | 3.2 | 42 | 3.3 | 42 | 3.4 | 42 | 3.5 | | | 2001 (611) | 850 | 43 | 3.7 | 43 | 3.8 | 42 | 3.2 | 42 | 3.3 | | ∢ | to | 875 | 43 | 3.5 | 43 | 3.6 | 43 | 3.7 | 43 | 3.8 | | U.S.A. | 3000 (914) | 900 | 43 | 3.3 | 43 | 3.4 | 43 | 3.5 | 43 | 3.6 | | | | 925 | 43 | 3.1 | 43 | 3.2 | 43 | 3.3 | 43 | 3.4 | | | | 950 | 43 | 2.9 | 43 | 3.0 | 43 | 3.1 | 43 | 3.2 | | | | 975 | 43 | 2.8 | 43 | 2.9 | 43 | 3.0 | 43 | 3.1 | | | | 1000 | 43 | 2.6 | 43 | 2.7 | 43 | 2.8 | 43 | 2.9 | | | | 775 | 42 | 3.2 | 42 | 3.3 | 42 | 3.4 | 42 | 3.5 | | | 3001 | 800 | 43 | 3.6 | 43 | 3.8 | 42 | 3.2 | 42 | 3.3 | | نہا | (915) | 825 | 43 | 3.4 | 43 | 3.5 | 43 | 3.7 | 43 | 3.8 | | U.S.A. | to | 850 | 43 | 3.2 | 43 | 3.3 | 43 | 3.4 | 43 | 3.6 | | > | | 875 | 43 | 3.0 | 43 | 3.1 | 43 | 3.3 | 43 | 3.4 | | | 4000 | 900 | 43 | 2.9 | 43 | 3.0 | 43 | 3.1 | 43 | 3.2 | | | (1219) | 925 | 43 | 2.7 | 43 | 2.8 | 43 | 2.9 | 43 | 3.0 | | + | | 950 | 43 | 2.6 | 43 | 2.7 | 43 | 2.8 | 43 | 2.8 | | | 4001 | 750 | 43 | 3.6 | 43 | 3.8 | 42 | 3.2 | 42 | 3.3 | | | | 775 | 43 | 3.4 | 43 | 3.5 | 43 | 3.6 | 43 | 3.8 | | l ≼ | (1220) | 800
825 | 43
43 | 3.2
3.0 | 43 | 3.3 | 43 | 3.4 | 43 | 3.5 | | U.S.A. | to | 850 | 43
43 | 3.0
2.8 | 43
43 | 3.1
2.9 | 43
43 | 3.2
3.0 | 43
43 | 3.3
3.1 | | _ | 5000 | 875 | 43 | 2.6
2.7 | 43
43 | 2.8 | 43
43 | 3.0
2.9 | 43 | 2.9 | | | (1524) | 900 | 43
43 | 2.7
2.5 | 43
43 | 2.6
2.6 | 43 | 2. 9
2.7 | 43 | 2.8 | | | (1324) | 925 | 43 | 2.4 | 43 | 2.5 | 43 | 2.6 | 43 | 2.6 | | | | 725 | 43 | 3.4 | 43 | 3.5 | 43 | 3.6 | 43 | 3.7 | | | 5001 | 750 | 43 | 3.2 | 43 | 3.3 | 43 | 3.4 | 43 | 3.5 | | | (1525) | 775 | 43 | 3.0 | 43 | 3.1 | 43 | 3.2 | 43 | 3.3 | | U.S.A. | | 800 | 43 | 2.8 | 43 | 2.9 | 43 | 3.0 | 43 | 3.1 | | U.S | to | 8 2 5 | 43 | 2.6 | 43 | 2.7 | 43 | 2.8 | 43 | 2.9 | | | 6000 | 850 | 43 | 2.5 | 43 | 2.5 | 43 | 2.6 | 43 | 2.7 | | | (1829) | 875 | 43 | 2.3 | 43 | 2.4 | 43 | 2.5 | 43 | 2.6 | | | (1320) | 900 | 43 | 2.2 | 43 | 2.3 | 43 | 2.3 | 43 | 2.4 | | | | 675 | 43 | 3.4 | 43 | 3.5 | 43 | 3.6 | 43 | 3.7 | | | 6001 | 700 | 43 | 3.1 | 43 | 3.3 | 43 | 3.4 | 43 | 3.5 | | | (1830) | 7 2 5 | 43 | 2.9 | 43 | 3.0 | 43 | 3.1 | 43 | 3.2 | | U.S.A. | | 750 | 43 | 2.7 | 43 | 2.8 | 43 | 2.9 | 43 | 3.0 | | U.S | to | 775 | 43 | 2.6 | 43 | 2.7 | 43 | 2.7 | 43 | 2.8 | | | 7000 | 800 | 43 | 2.4 | 43 | 2.5 | 43 | 2.6 | 43 | 2.7 | | | (2133) | 825 | 43 | 2.3 | 43 | 2.3 | 43 | 2.4 | 43 | 2.5 | | | | 850 | 43 | 2.1 | 43 | 2.2 | 43 | 2.3 | 43 | 2.4 | A10180 Table 11 - Orifice Size* and Manifold Pressure (In. W.C.) for Gas Input Rate (CONT) (TABULATED DATA BASED ON 22,000 BTUH PER BURNER, DERATED 4%/1000 FT (305M) ABOVE SEA LEVEL) | - | ALTITUDE | AVG. GAS | VG. GAS SPECIFIC GRAVITY OF NATURAL GAS | | | | | | | | |-----------------|----------|-------------|---|----------|---------|----------|---------|----------|---------|----------| | | RANGE | HEAT VALUE | (|).58 | (| 0.60 | 0.62 | | 0.64 | | | | | AT ALTITUDE | Orifice | Manifold | Orifice | Manifold | Orifice | Manifold | Orifice | Manifold | | | ft (m) | (Btu/cu ft) | No. | Pressure | No. | Pressure | No. | Pressure | No. | Pressure | | | | 650 | 43 | 3.1 | 43 | 3.2 | 43 | 3.4 | 43 | 3.5 | | | 7001 | 675 | 43 | 2.9 | 43 | 3.0 | 43 | 3.1 | 43 | 3.2 | | | (2134) | 700 | 43 | 2.7 | 43 | 2.8 | 43 | 2.9 | 43 | 3.0 | | U.S.A. | to | 725 | 43 | 2.5 | 43 | 2.6 | 43 | 2.7 | 43 | 2.8 | | U.S | 10 | 750 | 43 | 2.4 | 43 | 2.4 | 43 | 2.5 | 43 | 2.6 | | | 8000 | 775 | 43 | 2.2 | 43 | 2.3 | 43 | 2.4 | 43 | 2.4 | | | (2438) | 800 | 43 | 2.1 | 43 | 2.1 | 43 | 2.2 | 43 | 2.3 | | | | 825 | 48 | 3.7 | 43 | 2.0 | 43 | 2.1 | 43 | 2.2 | | | | 625 | 43 | 2.9 | 43 | 3.0 | 43 | 3.1 | 43 | 3.2 | | | 8001 | 650 | 43 | 2.7 | 43 | 2.8 | 43 | 2.9 | 43 | 3.0 | | di | (2439) | 675 | 43 | 2.5 | 43 | 2.6 | 43 | 2.7 | 43 | 2.8 | | U.S. <u>A</u> . | to | 700 | 43 | 2.3 | 43 | 2.4 | 43 | 2.5 | 43 | 2.6 | | ם כ | | 725 | 43 | 2.2 | 43 | 2.2 | 43 | 2.3 | 43 | 2.4 | | | 9000 | 750 | 43 | 2.0 | 43 | 2.1 | 43 | 2.2 | 43 | 2.2 | | | (2743) | 775 | 48 | 3.6 | 48 | 3.7 | 43 | 2.0 | 43 | 2.1 | | | 9001 | 600 | 43 | 2.7 | 43 | 2.8 | 43 | 2.9 | 43 | 3.0 | | | (2744) | 625 | 43 | 2.5 | 43 | 2.6 | 43 | 2.6 | 43 | 2.7 | | U.S.A. | to | 650 | 43 | 2.3 | 43 | 2.4 | 43 | 2.4 | 43 | 2.5 | | U.S | | 675 | 43 | 2.1 | 43 | 2.2 | 43 | 2.3 | 43 | 2.3 | | | 10000 | 700 | 48 | 3.7 | 43 | 2.0 | 43 | 2.1 | 43 | 2.2 | | | (3048) | 725 | 48 | 3.5 | 48 | 3.6 | 48 | 3.7 | 43 | 2.0 | ^{*} Orifice numbers shown in **BOLD** are factory-installed. A10180A ### **Check Safety Controls** The flame sensor, gas valve, and pressure switch were all checked in the Start-up procedure section as part of normal operation. 1. Check Main Limit Switch This control shuts off combustion system and energizes air-circulating blower motor, if furnace overheats. By using this method to check limit control, it can be established that limit is functioning properly and will operate if there is a restricted return-air supply or motor failure. If limit control does not function during this test, cause must be determined and corrected. - a. Run furnace for at least 5 minutes. - Gradually block off return air with a piece of cardboard or sheet metal until the limit trips. - c. Unblock return air to permit normal circulation. - d. Burners will re-light when furnace cools down. - Check draft safeguard switch. The purpose of this control is to cause the safe shutdown of the furnace during certain blocked vent conditions. - a. Verify vent pipe is cool to the touch. - Disconnect power to furnace and remove vent connector from furnace vent elbow. - c. Restore power to furnace and set room thermostat above room temperature. - d. After normal start-up, allow furnace to operate for 2 minutes, then block vent elbow in furnace 80 percent of vent area with a piece of flat sheet metal. - e. Furnace should cycle off within 2 minutes. If gas does not shut off within 2 minutes, determine reason draft safeguard switch did not function properly and correct condition. - f. Remove blockage from furnace vent elbow. - g. Switch will auto-reset when it cools. - h. Re-install vent connector. **NOTE**: Should switch remain open longer than 3 minutes, furnace control board will lockout the furnace for 3 hours. To reset furnace control board, turn thermostat below room temperature or from HEAT to OFF and turn 115-v power OFF, then back ON. 3. Check Pressure Switch(es) This control proves operation of the draft inducer blower. - a. Turn off 115-v power to furnace. - Disconnect inducer motor lead wires from wire harness. - c. Turn on 115-v power to furnace. - d. Set thermostat to "call for heat" and wait 1 minute. When pressure switch is functioning properly, hot surface igniter should NOT glow and control diagnostic light flashes a status code 32. If hot surface igniter glows when inducer motor is disconnected, shut down furnace immediately. - e. Determine reason pressure switch did not function properly and correct condition. - f. Turn off 115-v power to furnace. - g. Reconnect inducer motor wires, replace outer door, and turn on 115-v power. - Blower will run for 90 seconds before beginning the call for heat again. - i. Furnace should ignite normally. ### Checklis 1. Put away tools and instruments. Clean up debris. - 2. Verify that blower OFF-DELAY time is selected as desired - Verify that blower and burner access doors are properly installed. - 4. Cycle test furnace with room thermostat. - Check operation of accessories per manufacturer's instructions. - 6. Review User's Guide with owner. - 7. Attach literature packet to furnace. Table 12 - Blower Off Delay Setup Switch | DESIRED HEATING MODE
BLOWER OFF DELAY (SEC.) | SETUP SWITCH
(SW-7 AND -8)
POSITION | | |---|---|-------| | | SW1-7 | SW1-8 | | 90 | OFF | OFF | | 120 | ON | OFF | | 150 | OFF | ON | | 180 | ON | ON | # SERVICE AND MAINTENANCE PROCEDURES Untrained personnel can perform basic maintenance functions such as cleaning and replacing air filters. All other operations must be performed by trained service personnel. A qualified service person should inspect the furnace once a year. # **A** WARNING ### FIRE, INJURY OR DEATH HAZARD Failure to follow this warning could result in personal injury, death and/or property damage. The ability to properly perform maintenance on this equipment requires certain knowledge, mechanical skills, tools, and equipment. If you do not possess these, do not attempt to perform any maintenance on this equipment other than those procedures recommended in the User's Manual. # **A** CAUTION ### ENVIRONMENTAL HAZARD Failure to follow this caution may result in environmental pollution. Remove and recycle all components or materials (i.e. oil, refrigerant,
control board, etc.) before unit final disposal. # **A** WARNING # ELECTRICAL SHOCK, FIRE OR EXPLOSION HAZARD Failure to follow this warning could result in personal injury or death, or property damage. Before installing, modifying, or servicing system, main electrical disconnect switch must be in the OFF position and install a lockout tag. There may be more than one disconnect switch. Lock out and tag switch with a suitable warning label. Verify proper operation after servicing. # **A** CAUTION ## ELECTRICAL OPERATION HAZARD Failure to follow this caution may result in improper furnace operation or failure of furnace. Label all wires prior to disconnection when servicing controls. Wiring errors can cause improper and dangerous operation. ### General These instructions are written as if the furnace is installed in an upflow application. An upflow furnace application is where the blower is located below the combustion and controls section of the furnace, and conditioned air is discharged upward. Since this furnace can be installed in any of the 4 positions shown in Fig. 4, you must revise your orientation to component location accordingly. ## **Electrical Controls and Wiring** # **A** WARNING ## ELECTRICAL SHOCK HAZARD Failure to follow this warning could result in personal injury or death. There may be more than one electrical supply to the furnace. Check accessories and cooling unit for additional electrical supplies that must be shut off during furnace servicing. Lock out and tag switch with a suitable warning label. The electrical ground and polarity for 115-v wiring must be properly maintained. Refer to Fig. 25 for field wiring information and to Fig. 48 for furnace wiring information. **NOTE**: If the polarity is not correct, the STATUS LED on the control will flash rapidly and prevent the furnace from heating. The control system also requires an earth ground for proper operation of the control and flame-sensing electrode. The 24-v circuit contains an automotive-type, 3-amp. fuse located on the control. (See Fig. 26.) Any shorts of the 24-v wiring during installation, service, or maintenance will cause this fuse to blow. If fuse replacement is required, use ONLY a 3-amp. fuse. The control LED will display status code 24 when fuse needs to be replaced. Proper instrumentation is required to service electrical controls. The control in this furnace is equipped with a Status Code LED (Light-Emitting Diode) to aid in installation, servicing, and troubleshooting. Status codes can be viewed at the sight glass in blower access door. The amber furnace control LED is either ON continuously, rapid flashing, or a code composed of 2 digits. The first digit is the number of short flashes, the second digit is the number of long flashes. For an explanation of status codes, refer to service label located on blower access door or Fig. 45. See Fig. 52, a brief Troubleshooting Guide. The stored status codes will NOT be erased from the control memory, when 115- or 24-v power is interrupted. The control will store up to the last 7 Status Codes in order of occurrence. 1. To retrieve status codes, proceed with the following: **NOTE**: NO thermostat signal may be present at control, and all blower-OFF delays must be completed. a. Leave 115-v power to furnace turned on. - b. Remove outer access door. - Look into blower access door sight glass for current LED status. - d. Remove blower access door. **NOTE**: The Status Codes cannot be retrieved by disconnecting the limit switch or draft safeguard switch. To retrieve Status Codes, follow the procedure below. - 2. Turn Setup Switch, SW1-1 "ON." - 3. Manually close blower access door switch. - 4. Control will flash up to 7 Status Codes. - 5. The last Status Code, or 8th Code, will be Code 11. - 6. Turn SW1-1 "OFF." - A continuously-lit Amber LED will appear and indicates proper operation. - Release blower access door switch, install blower access door and replace outer door or refer to the SERVICE label on the front of the blower access door for more information. ### **Component Self-Test** Component Test can ONLY be initiated by performing the following: - 1. Remove outer access door. - 2. Remove blower access door. - 3. Remove the wire from the "R" terminal of the control board - 4. Turn Setup Switch, SW-1-6 "ON." - 5. Manually close blower access door switch. Blower access door switch opens 115-v power to control. No component operation can occur unless switch is closed. Caution must be taken when manually closing this switch for service purposes. # **A** WARNING ### ELECTRICAL SHOCK HAZARD Failure to follow this warning could result in personal injury, or death. Blower access door switch opens 115-v power to furnace control. No component operation can occur unless switch is closed. Exercise caution to avoid electrical shock from exposed electrical components when manually closing this switch for service purposes. - 6. Component Test sequence will function as follows: - a. Inducer motor starts and continues to run until Step (d.) of component test sequence. - b. Hot surface igniter is energized for 15 sec, then deenergized. - c. Blower operates for 15 sec, then turns off. - d. After component test is completed, one or more status code 11 will flash. See component test section of service label for explanation of status codes. **NOTE**: To repeat component test, turn setup switch SW1-6 OFF then back ON. - e. Turn setup switch SW1-6 OFF. - RELEASE BLOWER ACCESS DOOR SWITCH, reattach wire to "R" terminal on furnace control board, replace blower access door, and replace outer access door. Fig. 48 - Wiring Diagram A190274 ## **CARE AND MAINTENANCE** # **A** WARNING ## FIRE OR EXPLOSION HAZARD Failure to follow this warning could result in personal injury, death and/or property damage. Never store anything on, near, or in contact with the furnace, such as: - 1. Spray or aerosol cans, rags, brooms, dust mops, vacuum cleaners, or other cleaning tools. - 2. Soap powders, bleaches, waxes or other cleaning compounds, plastic or plastic containers, gasoline, kerosene, cigarette lighter fluid, dry cleaning fluids, or other volatile fluids. - Paint thinners and other painting compounds, paper bags, or other paper products. Exposure to these materials could lead to corrosion of the heat exchangers. For continuing high performance and to minimize possible furnace failure, periodic maintenance must be performed on this furnace. Consult your local dealer about proper frequency of maintenance and the availability of a maintenance contract. # **A** WARNING # ELECTRICAL SHOCK AND FIRE HAZARD Failure to follow this warning could result in personal injury, death, and/or property damage. Turn off the gas and electrical supplies to the furnace and install lockout tag before performing any maintenance or service. Follow the operating instructions on the label attached to the furnace. # **A** WARNING # CARBON MONOXIDE POISONING AND FIRE HAZARD Failure to follow this warning could result in personal injury, death and/or property damage. Never operate furnace without a filter or with filter access door removed. # **A** CAUTION #### **CUT HAZARD** Failure to follow this caution may result in personal injury. Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts, and servicing furnaces. The minimum maintenance on this furnace is as follows: - Check and clean air filter each month or more frequently if required. Replace if torn. - Check blower motor and wheel for cleanliness each heating and cooling season. Clean as necessary. - Check electrical connections for tightness and controls for proper operation each heating season. Service as necessary. - Inspect burner compartment before each heating season for rust, corrosion, soot or excessive dust. If necessary, have furnace and burner serviced by a qualified service agency. - Inspect the vent pipe/vent system before each heating season for rust, corrosion, water leakage, sagging pipes or broken fittings. Have vent pipes/vent system serviced by a qualified service agency. - Inspect any accessories attached to the furnace such as a humidifier or electronic air cleaner. Perform any service or maintenance to the accessories as recommended in the accessory instructions. ## Cleaning and/or Replacing Air Filter The air filter arrangement will vary depending on the application. **NOTE**: If the filter has an airflow direction arrow, the arrow must point towards the blower. # **A** CAUTION ### **CUT HAZARD** Failure to follow this caution may result in personal injury. Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing, safety glasses and gloves when handling parts, and servicing furnaces. ### Media cabinet filter procedures: - Turn off electrical supply to furnace before removing filter access door. - 2. Remove filter cabinet door. - 3. Slide filter out of cabinet. - 4. If equipped with permanent, washable 3/4-in. (19 mm) filter, clean filter by spraying cold tap water through filter in opposite direction of airflow. Rinse filter and let dry. Oiling or coating of the filter is not recommended. See Table 13 for size information. - 5. If equipped with factory-specified disposable media filter, replace only with media filter having the same part number and size. For expandable replacement media, refer to the instructions included with the replacement media. - 6. Slide filter into cabinet. - 7. Replace filter cabinet door. - 8. Turn on electrical supply to furnace. # Blower Motor and Wheel # **A** WARNING #### ELECTRICAL SHOCK HAZARD Failure to follow this warning could result in personal injury or death. Blower access door switch opens 115-v power to control. No component operation can occur unless switch is closed. Caution must be taken when manually closing this switch for service purposes. **NOTE**: The blower wheel should not be
dropped or bent as balance will be affected. # The following steps should be performed by a qualified service agency. To ensure long life and high efficiency, clean accumulated dirt and grease from blower wheel and motor annually. Table 13 – Filter Size Information – In. (mm) | FURNACE | FILTER | FILTER | | |-----------------|-----------------------------------|-----------------------------------|-----------| | CASING
WIDTH | SIDE
RETURN | BOTTOM
RETURN | TYPE | | 14-1/2 (368) | 16 X 25 X 3/4
(406 X 635 X 19) | 14 X 25 X 3/4
(356 X 635 X 19) | Washable* | | 17-1/2 (445) | 16 X 25 X 3/4
(406 X 635 X 19) | 16 X 25 X 3/4
(406 X 635 X 19) | Washable* | | 21 (533) | 16 X 25 X 3/4
(406 X 635 X 19) | 20 X 25 X 3/4
(508 X 635 X 19) | Washable* | | 24 (610) | 16 X 25 X 3/4
(406 X 635 X 19) | 24 X 25 X 3/4
(610 X 635 X 19) | Washable* | ^{*} Recommended The inducer and blower motors are pre-lubricated and require no additional lubrication. These motors can be identified by the absence of oil ports on each end of the motor. Clean blower motor and wheel as follows: - 1. Turn off electrical supply to furnace. - 2. Remove outer door. - For downflow or horizontal furnaces having vent pipes within the furnace that pass in front of the blower access door: - a. Disconnect vent connector from furnace vent elbow. - b. Disconnect and remove short piece of vent pipe from within furnace. - Remove screws from blower access door and remove blower access door. - All factory wires can be left connected, but field thermostat connections may need to be disconnected depending on their length and routing. - 6. Remove 2 screws holding blower assembly to blower deck and slide blower assembly out of furnace. - 7. Clean blower wheel and motor using a vacuum with soft brush attachment. Blower wheel blades may be cleaned with a small paint or flux brush. Do not remove or disturb balance weights (clips) on blower wheel blades. - Vacuum any loose dust from blower housing, wheel and motor. - 9. If a greasy residue is present on blower wheel, remove wheel from the blower housing and wash it with an appropriate degreaser. To remove wheel: **NOTE**: Before disassembly, mark blower mounting arms, motor, and blower housing so motor and each arm is positioned at the same location during reassembly. - a. Disconnect ground wire attached to blower housing. - Remove screws securing cutoff plate and remove cutoff plate from housing. - c. Loosen set screw holding blower wheel on motor shaft (160+/-20 in.-lb. when assembling). - d. Remove bolts holding motor to blower housing and slide motor out of wheel (40+/-10 in.-lb. when reassembling). - e. Remove blower wheel from housing. - f. Clean wheel and housing. - Reassemble motor and blower by reversing steps 9a, through 9e. Be sure to reattach ground wire to the blower housing. - 11. Verify that blower wheel is centered in blower housing and set screw contacts the flat portion of the motor shaft. Loosen set screw on blower wheel and reposition if necessary. - 12. Spin the blower wheel by hand to verify that the wheel does not rub on the housing. - 13. Reinstall blower assembly in furnace. - 14. Reinstall 2 screws securing blower assembly to blower deck - Reconnect blower leads to furnace control. Refer to furnace wiring diagram, and connect thermostat leads if previously disconnected. - 16. To check blower for proper rotation: - a. Turn on electrical supply. # **▲** WARNING #### ELECTRICAL SHOCK HAZARD Failure to follow this warning could result in personal injury, or death. Blower access door switch opens 115-v power to furnace control. No component operation can occur unless switch is closed. Exercise caution to avoid electrical shock from exposed electrical components when manually closing this switch for service purposes. b. Manually close blower access door switch. **NOTE**: If R-W thermostat terminals are jumpered at the time blower access door switch is closed, blower will run for 90 sec before beginning a heating cycle. - Perform component self-test as shown at the bottom of the SERVICE label, located on the front of blower access door. - d. Verify blower is rotating in the correct direction - 17. If furnace is operating properly, RELEASE BLOWER ACCESS DOOR SWITCH. Remove any jumpers or reconnect any disconnected thermostat leads. Replace blower access door. - 18. Downflow or horizontal furnaces with vent pipe through furnace only: - a. Install and connect short piece of vent pipe inside furnace to existing vent. - b. Connect vent connector to vent elbow. - 19. Reinstall outer door. - 20. Turn on gas supply and cycle furnace through one complete heating and cooling cycle. Verify the furnace temperature rise as shown in Adjustments Section. Adjust temperature rise as shown in Adjustments Section. If outdoor temperature is below 70°F, turn off circuit breaker to outdoor unit before running furnace in the cooling cycle. Turn outdoor circuit breaker on after completing cooling cycle. ## **Cleaning Heat Exchanger** The following steps should be performed by a qualified service agency: **NOTE**: If the heat exchangers get a heavy accumulation of soot and carbon, they should be replaced rather than trying to clean them thoroughly. A build-up of soot and carbon indicates that a problem exists which needs to be corrected, such as improper adjustment of manifold pressure, insufficient or poor quality combustion air, incorrect size or damaged manifold orifice(s), improper gas, or a restricted heat exchanger. Action must be taken to correct the problem. A05025 Fig. 49 - Igniter Position - Side View A05026 Fig. 50 - Igniter Position - Top View If it becomes necessary to clean the heat exchangers because of dust or corrosion, proceed as follows: - 1. Turn OFF gas and electrical power to furnace. - 2. Remove outer access door. - 3. Disconnect vent connector from furnace vent elbow. - 4. For downflow or horizontal furnace having an internal vent pipe, remove internal vent pipe within the casing. - Disconnect wires to the following components. Mark wires to aid in reconnection (be careful when disconnecting wires from switches because damage may occur): - a. Draft safeguard switch. - b. Inducer motor. - c. Pressure switches. - d. Limit overtemperature switch. - e. Gas valve. - f. Hot surface igniter. - g. Flame-sensing electrode. - h. Flame rollout switches. - Remove screws that fasten the collector box assembly to the cell panel. Be careful not to damage the collector box. Inducer assembly and elbow need not be removed from collector box. - 7. Disconnect gas line from gas manifold. - Remove the four screws that attach the burner assembly to the cell panel. The gas valve and individual burners need not be removed from support assembly. Remove NOx baffles, if installed. **NOTE**: Be very careful when removing burner assembly to avoid breaking igniter. See Fig. 49-50 for correct igniter location. 9. Using field-provided 25-caliber rifle cleaning brush, 36-in. (914 mm) long, 1/4-in. (6 mm) diameter steel spring cable, a variable speed, follows: - Remove metal screw fitting from wire brush to allow insertion into cable. - b. Insert the twisted wire end of brush into end of spring cable, and crimp tight with crimping tool or crimp by striking with ball-peen hammer. TIGHTNESS IS VERY IMPORTANT. **NOTE**: The materials needed in item 9 can usually be purchased at local hardware stores. - (1.) Attach variable-speed, reversible drill to the end of spring cable (end opposite brush). - (2.) Insert brush end of cable into the outlet opening of cell and slowly rotate with drill. DO NOT force cable. Gradually insert cable into upper pass of cell. (See Fig. 51.) - (3.) Work cable in and out of cell 3 or 4 times to obtain sufficient cleaning. DO NOT pull cable with great force. Reverse drill and gradually work cable out. - (4.) Insert brush end of cable in burner inlet opening of cell, and proceed to clean 2 lower passes of cell in same manner as upper pass. - (5.) Repeat foregoing procedures until each cell in furnace has been cleaned. - (6.) Using vacuum cleaner, remove residue from each cell. - (7.) Using vacuum cleaner with soft brush attachment, clean burner assembly. - (8.) Clean flame sensor with fine steel wool. A91252 Fig. 51 - Cleaning Heat Exchanger Cell - (9.) Reinstall burner assembly. Center burners in cell openings. - 10. Remove old sealant from cell panel and collector box flange. - 11. Spray releasing agent on the heat exchanger cell panel where collector box assembly contacts cell panel. **NOTE**: A releasing agent such as cooking spray or equivalent (must not contain corn or canola oil, aromatic or halogenated hydrocarbons or inadequate seal may occur) and RTV sealant (G.E. 162, 6702, or Dow-Corning 738) are needed before starting installation. DO NOT substitute any other type of RTV sealant. G.E. 162 (P771-9003) is available through RCD in 3-oz tubes. - 12. Apply new sealant to flange of collector box and attach to cell panel using existing screws, making sure all screws are secure. - 13. Reconnect wires to the following components (Use connection diagram on wiring label, if wires were not marked for reconnection locations.): - a. Draft safeguard switch. - b. Inducer motor. - c. Pressure switches. - d. Limit overtemperature switch. - e. Gas valve. - f. Hot surface igniter. - g. Flame-sensing electrode. - h. Flame rollout switches. - 14. Reinstall internal vent pipe, if applicable. - 15. Reinstall vent connector on furnace vent elbow. Securely fasten vent connector to vent elbow with 2 field-supplied, corrosion-resistant, sheet metal screws located 180° apart. - 16. Replace blower access door only if it was removed. - 17. Set thermostat above room temperature and check furnace for proper operation. - 18. Verify blower airflow and speed changes between heating and cooling. # **A** WARNING ## FIRE OR EXPLOSION HAZARD Failure to follow this warning could result in personal injury, death,
and/or property damage. Never purge a gas line into a combustion chamber. Never test for gas leaks with an open flame. Use a commercially available soap solution made specifically for the detection of leaks to check all connections. A fire or explosion may result causing property damage, personal injury or loss of life 19. Check for gas leaks. ### Sequence of Operation **NOTE**: Furnace control must be grounded for proper operation or control will lock out. Control is grounded through green/yellow wire routed to gas valve and manifold bracket screw. Using the schematic diagram, follow the sequence of operation through the different modes. Read and follow the wiring diagram very carefully. **NOTE**: If a power interruption occurs during a call for heat (W), the control will start a 90-sec blower-only ON period two seconds after power is restored, if the thermostat is still calling for gas heating. The amber LED light will flash code 12 during the 90-sec period, after which the LED will be ON continuous, as long as no faults are detected. After the 90-sec period, the furnace will respond to the thermostat normally. The blower door must be installed for power to be conducted through the blower door interlock switch ILK to the furnace control CPU, transformer TRAN, inducer motor IDM, blower motor BLWM, hot-surface igniter HSI, and gas valve GV. #### 1. Heating The wall thermostat "calls for heat," closing the R-to-W circuit. The furnace control performs a self-check, verifies the pressure switch contacts PRS are open, and starts the inducer motor IDM. - a. Inducer Prepurge Period As the inducer motor IDM comes up to speed, the pressure switch contacts PRS close, 24 VAC power is supplied for a field installed humidifier at the HUM terminal and the control begins a 15-sec prepurge period. - b. **Igniter Warm-Up-** At the end of the prepurge period, the Hot-Surface igniter HSI is energized for a 17-second igniter warm-up period. - c. Trial-for-Ignition Sequence- When the igniter warm-up period is completed, the main gas valve relay contacts GVR close to energize the gas valve GV, the gas valve opens, The gas valve GV permits gas flow to the burners where it is ignited by the HSI. Five seconds after the GVR closes, a 2-second flame proving period begins. The HSI igniter will remain energized until the flame is sensed or until the 2-second flame proving period begins. - d. Flame-Proving- When the burner flame is proved at the flame-proving sensor electrode FSE, the furnace control CPU begins the blower-ON delay period and continues to hold the gas valve GV open. If the burner flame is not proved within two seconds, the control CPU will close the gas valve GV, and the control CPU will repeat the ignition sequence for up to three more Trials-For-Ignition before going to Ignition-Lockout. Lockout will be reset automatically after three hours or by momentarily interrupting 115 vac power to the furnace, or by interrupting 24 vac power at SEC1 or SEC2 to the furnace control CPU (not at W, G, R, etc.) If flame is proved when flame should not be present, the furnace control CPU will lock out of Gas-Heating mode and operate the inducer motor IDM until flame is no longer proved. - e. Blower-On Delay- If the burner flame is proven, the blower motor is energized on HEAT speed 25 sec after the gas valve GV is energized. Simultaneously, the electronic air cleaner terminal EAC-1 is energized and remains energized as long as the blower motor BLWM is energized. - f. Heat-Off Delay- When the thermostat is satisfied, the R-to-W circuit is opened, de-energizing the gas valve GV, stopping gas flow to the burners, and de-energizing the 24-v humidifier terminal 24VAC HUM. The inducer motor IDM will remain energized for a 5-second post-purge period. Then turn off the inducer motor. The blower motor BLWM and air cleaner terminal EAC 1 will remain energized for 90, 120, 150, or 180 seconds (depending on the HEAT-OFF delay selection). The furnace control CPU is factory-set for a 120-second Heat-Off Delay. ### 2. Cooling mode The thermostat "calls for cooling". #### a. Single-Speed Cooling- See Fig. 27 for thermostat connections The thermostat closes the R-to-G-and-Y circuits. The R-to- Y circuit starts the outdoor unit, and the R-toG-and-Y/Y2 circuits start the furnace blower motor BLWM on cooling airflow. Cooling airflow is based on the A/C selection shown in Fig. 47. The electronic air cleaner terminal EAC-1 is energized with 115 vac when the blower motor BLWM is operating. When the thermostat is satisfied, the R-to-G-and-Y circuits are opened. The outdoor unit will stop, and the furnace blower motor BLWM will continue operating at cooling airflow for an additional 90 seconds. Jumper Y/Y2 to DHUM to reduce the cooling off-delay to 5 seconds. (See Fig. 48.) # b. Single-Stage Thermostat and Two-Speed Cooling (Adaptive Mode) - See Fig. 26 for thermostat connections. This furnace can operate a two-speed cooling unit with a single-stage thermostat because the furnace control CPU includes a programmed adaptive sequence of controlled operation, which selects low-cooling or high-cooling operation. This selection is based upon the stored history of the length of previous cooling period of the single-stage thermostat. **NOTE**: The air conditioning relay disable jumper ACRDJ must be connected to enable the adaptive cooling mode in response to a call for cooling. (See Fig. 48.) When ACRDJ is in place the furnace control CPU can turn on the air conditioning relay ACR to energize the Y/Y2 terminal and switch the outdoor unit to high-cooling. The furnace control CPU can start up the cooling unit in either low- or high-cooling. If starting up in low-cooling, the furnace control CPU determines the low-cooling on-time (from 0 to 20 minutes) which is permitted before switching to high-cooling. If the power is interrupted, the stored history is erased and the furnace control CPU will select low-cooling for up to 20 minutes and then energize the air conditioning relay ACR to energize the Y/Y2 terminal and switch the outdoor unit to high-cooling, as long as the thermostat continues to call for cooling. Subsequent selection is based on stored history of the thermostat cycle times. The wall thermostat "calls for cooling", closing the R-to-G-and-Y circuits. The R-to-Y1 circuit starts the outdoor unit on low-cooling speed, and the R-to-G-and-Y1 circuits starts the furnace blower motor BLWM at low-cooling airflow which is the true on-board CF selection as shown in Fig. 47. If the furnace control CPU switches from low-cooling to high-cooling, the furnace control CPU will energize the air conditioning relay ACR. When the air conditioning relay ACR is energized the R-to-Y1-and-Y2 circuits switch the outdoor unit to high-cooling speed, and the R-to-G-and-Y1-and-Y/Y2 circuits transition the furnace blower motor BLWM to high-cooling airflow. High-cooling airflow is based on the A/C selection shown in Fig. 47. **NOTE**: When transitioning from low-cooling to high-cooling the outdoor unit compressor will shut down for 1 minute while the furnace blower motor BLWM transitions to run at high-cooling airflow. The electronic air cleaner terminal EAC-1 is energized with 115 vac whenever the blower motor BLWM is operating. When the thermostat is satisfied, the R-to-G-and-Y circuit are opened. The outdoor unit stops, and the furnace blower BLWM and electronic air cleaner terminal EAC-1 will remain energized for an additional 90 seconds. Jumper Y1 to DHUM to reduce the cooling off-delay to 5 seconds. (See Fig. 48.) c. Two-Stage Thermostat and Two-Speed Cooling See Fig. 27 for thermostat connections **NOTE**: The air conditioning relay disable jumper ACRDJ must be disconnected to allow thermostat control of the outdoor unit staging. (See Fig. 48.) The thermostat closes the R-to-G-and-Y1 circuits for low-cooling or closes the R-to-G-and-Y1-and-Y2 circuits for high-cooling. The R-to-Y1 circuit starts the outdoor unit on low-cooling speed, and the R-to-G-and-Y1 circuit starts the furnace blower motor BLWM at low-cooling airflow which is the true on-board CF selection as shown in Table 4 and Fig. 47. The R-to-Y1-and-Y2 circuits start the outdoor unit on high-cooling speed, and the R-to- G-and-Y/Y2 circuits start the furnace blower motor BLWM at high-cooling airflow. High-cooling airflow is based on the A/C (air conditioning) selection shown in Fig. 47. The electronic air cleaner terminal EAC-1 is energized with 115 vac whenever the blower motor BLWM is operating. When the thermostat is satisfied, the R-to-G-and-Y1 or R-to-G-and-Y1-and-Y2 circuits are opened. The outdoor unit stops, and the furnace blower BLWM and electronic air cleaner terminal EAC-1 will remain energized for an additional 90 seconds. Jumper Y1 to DHUM to reduce the cooling off-delay to 5 seconds. (See Fig. 48.) ### 3. Thermidistat Mode See Fig. 27 for thermostat connections. The dehumidification output, DHUM on the Thermidistat should be connected to the furnace control thermostat terminal DHUM. When there is a dehumidify demand, the DHUM input is activated, which means 24 vac signal is removed from the DHUM input terminal. In other words, the DHUM input logic is reversed. The DHUM input is turned ON when no dehumidify demand exists. Once 24 vac is detected by the furnace control on the DHUM input, the furnace control operates in Thermidistat mode. If the DHUM input is low for more than 48 hours, the furnace control reverts back to non-Thermidistat mode. The cooling operation described in item 3. above also ap- plies to operation with a Thermidistat. The exceptions are listed below: - a. Low cooling-When the R-to-G-and-Y1 circuit is closed and there is a demand for dehumidification, the furnace blower motor BLWM will drop the blower airflow to 90 percent of low-cooling airflow which is the true on-board CF selection as shown in Table 4 and Fig. 47. - b. High cooling-When the R-to-G-and Y/Y2 circuit is closed and there is
a demand for dehumidification, the furnace blower motor BLWM will drop the blower airflow to 90 percent of high-cooling airflow. Highcooling airflow is based on the A/C (air conditioning) selection shown in Fig. 47. - c. Cooling off-delay-When the "call for cooling" is satisfied and there is a demand for dehumidification, the cooling blower-off delay is decreased from 90 seconds to 5 seconds. ## 4. Continuous Blower Mode When the R-to-G circuit is closed by the thermostat, the blower motor BLWM will operate at continuous blower airflow. Continuous blower airflow selection is initially based on the CF selection shown in Table 4 and and Fig. 47. Factory default is shown in Table 4. Terminal EAC-1 is energized as long as the blower motor BLWM is energized. During a call for heat, the furnace control CPU will transition the blower motor BLWM to continuous blower airflow or heat airflow whichever is lowest. The blower motor BLWM will remain ON until the main burners ignite then shut OFF and remain OFF for the blower-ON delay (25 seconds in heat), allowing the furnace heat exchangers to heat up more quickly, then restarts at the end of the blower-ON delay period at heat. The blower motor BLWM will revert to continuous-blower airflow after the heating cycle is completed. When the thermostat "calls for low-cooling", the blower motor BLWM will switch to operate at low-cooling airflow. When the thermostat is satisfied, the blower motor BLWM will operate an additional 90 seconds at low-cooling airflow before transitioning back to continuous-blower airflow. When the thermostat "calls for high-cooling", the blower motor BLWM will operate at high cooling airflow. When the thermostat is satisfied, the blower motor BLWM will operate an additional 90 seconds at high-cooling airflow before transitioning back to continuous-blower airflow. When the R-to-G circuit is opened, the blower motor BLWM will continue operating for an additional 5 seconds, if no other function requires blower motor BLWM operation. # Continuous Blower Speed Selection from Thermostat To select different continuous-blower airflow from the room thermostat, momentarily turn off the FAN switch or push button on the room thermostat for 1-3 seconds after the blower motor BLWM is operating. The furnace control CPU will shift the continuous-blower airflow from the factory setting to the next highest CF selection airflow as shown in Table 4 and Fig. 47. Momentarily turning off the FAN switch again at the thermostat will shift the continuous-blower airflow up one more increment. If you repeat this procedure enough you will eventually shift the continuous-blower airflow to the lowest CF selection as shown in Table 4 and Fig. 47. The selection can be changed as many times as desired and is stored in the memory to be automatically used following a power interruption. **NOTE**: If the blower-off delay is set to the maximum, the adjustable continuous-fan feature is locked (i.e., fan speed cannot be changed from its current setting). #### 5. Heat pump See Fig. 27 for thermostat connections. When installed with a heat pump, the furnace control automatically changes the timing sequence to avoid long blower off times during demand defrost cycles. Whenever W/W1 is energized along with Y1 or Y/Y2, the furnace control CPU will transition to or bring on the blower motor BLWM at cooling airflow or low-heat airflow, whichever is lowest. The blower motor BLWM will remain on until the main burners ignite then shut OFF and remain OFF for 25 seconds before coming back on at heating airflow. When the W/W1 input signal disappears, the furnace control begins a normal inducer post-purge period while changing the blower airflow. If Y/Y2 input is still energized the furnace control CPU will transition the blower motor BLWM airflow to cooling airflow. If Y/Y2 input signal disappears and the Y1 input is still energized the furnace control CPU will transition the blower motor BLWM to low-cooling airflow. If both the Y1 and Y/Y2 signals disappear at the same time, the blower motor BLWM will remain on at low-heat airflow for the selected blower-OFF delay period. At the end of the blower-OFF delay, the blower motor BLWM will shut OFF unless G is still energized, in which case the blower motor BLWM will operate at continuous blower airflow. ## 6. Component test The furnace features a component test system to help diagnose a system problem in the case of a component failure. To initiate the component test procedure, ensure that there are no thermostat inputs to the control and all time delays have expired. Turn on setup switch SW1-6. (See Fig. 46.) **NOTE**: The component test feature will not operate if the control is receiving any thermostat signals or until all time delays have expired. The component test sequence is as follows: - a. The furnace control CPU turns the inducer motor ON and keeps it ON through step c. - After waiting 10 seconds the furnace control CPU turns the hot surface igniter ON for 15 seconds, then OFF - c. The furnace control CPU then turns the blower motor BLWM on at 50 percent torque for 15 seconds, then OFF. **NOTE**: The EAC terminals are energized when the blower is operating. After the component test is completed, status code 11 will flash. See component test section or Service Label (Fig. 45) for explanation of status codes. **NOTE**: To repeat component test, turn setup switch SW1-6 to OFF and then back ON. ### **Wiring Diagrams** Refer to Fig. 48 for wiring diagram. # **Troubleshooting** Refer to the service label. (See Fig. 45) The Troubleshooting Guide (See Fig. 52) can be a useful tool in isolating furnace operation problems. Beginning with the word "Start," answer each question and follow the appropriate arrow to the next item. The Guide will help to identify the problem or failed component. After replacing any component, verify correct operation sequence. Fig. 52 - Troubleshooting Guide Fig. 52 - Troubleshooting Guide (Continued) A05032 ## PARTS REPLACEMENT INFORMATION GUIDE **CASING GROUP** Outer door Blower door Top filler plate Bottom filler plate Bottom enclosure **ELECTRICAL GROUP** Control bracket Junction box Limit switch(es) Circuit board Door switch Transformer Wiring harness 115v Wiring harness 24v BLOWER GROUP Blower housing Blower cutoff Blower motor Blower wheel Grommet Power choke (where used) GAS CONTROL GROUP Manifold Burner assembly Orifice Flame sensor Hot surface igniter Gas valve Manual reset limit switches Burner support assembly HEAT EXCHANGER GROUP Heat exchanger cell Cell panel Lox NOx baffle (California models only) **INDUCER GROUP** Housing assembly Pressure switch Inducer motor Inducer wheel Vent elbow assembly Draft safeguard switch **TO OBTAIN INFORMATION ON PARTS:** Consult your installing dealer or classified section of your local telephone directory under "Heating Equipment" or "Air Conditioning Contractors and Systems" headings for dealer listing by brand name or contact: ### **CARRIER CORPORATION** Consumer Relations Department P.O. Box 4808 Syracuse, New York 13221-4808 1-800-CARRIER Have available the model number, series number, and serial number located on the unit rating plate to ensure correct replacement part. #### **Example of Model Number** | MODEL | AFUE
NOX | MAJOR
SERIES | HTG
INPUT | MOTOR
TYPE | WIDTH | VOLT-
AGE | MINOR
SERIES | CLG
CAPACITY | |-------|-------------|-----------------|--------------|---------------|-------|--------------|-----------------|-----------------| | 58SP | 0 | A | 070 | V | 17 | - | - | 16 | **WARNING**: Improper installation, adjustment, alteration, service, or maintenance can cause personal injury, property damage, or death. Consult a qualified installer, service agency, or your local gas supplier for information or assistance. The qualified installer or service agency must use only factory-authorized replacement parts, kits, or accessories when modifying this product. #### **Training** My Learning Center is your central location for professional residential HVAC training resources that help strengthen careers and businesses. We believe in providing high quality learning experiences both online and in the classroom. Access My Learning Center with your HVACpartners credentials at www.MLCtraining.com. Please contact us at mylearning@utc.com with questions. Copyright 2019 Carrier Corp. • 7310 W. Morris St. • Indianapolis, IN 46231 Edition Date: 07/19 Catalog No: 58SP0A-01SI Replaces: NEW